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Abstract 

In the context of smart cities, the integration of Electric Vehicles (EVs) presents new 

opportunities and challenges related to cyber security, particularly regarding domain name 

system (DNS) threats. EVs, which are an important component of smart city infrastructure, 

rely on Internet connectivity for various services, including navigation and real-time traffic 

updates, making them vulnerable to DNS-based cyberattacks. Malicious DNS activities pose a 

threat to these integrated systems, potentially disrupting communication and services crucial 

for EV functionality. Our proposed lightweight DNS detection model is well suited for 

deployment on embedded devices found within EVs, ensuring that DNS threats can be 

recognized and neutralized swiftly, thus maintaining the integrity and efficiency of smart city 

operations. Using a hybrid CNN and RNN architecture, the model processes the sequence of 

data effectively, offering protection not only against general malware but also against specific 

DNS threats that can affect EV communications. This improves the overall cyber resilience of 

smart cities as they incorporate more advanced and interconnected technologies. 

 

Keywords: Malicious DNS Detection, Lightweight Threat Detection, Convolutional Neural 

Networks (CNN), Bidirectional Long Short-Term Memory (BiLSTM), Embedded IoT Devices, 

DNS Security, Smart Traffic Control, Automated Vehicle Systems 

 

Introduction 

With the rapid evolution of hardware and software technologies, digital devices have become 

more and more potent. Individuals and companies frequently depend on servers and 

computers to transfer and manage information over the Internet. As of 2017, the global 

population using the internet reached an estimated 3.5 billion, a figure that is rapidly rising. 
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Despite the optimistic outlook for the digital technology sector, there are significant risks. 

Malicious activities motivated by economic gain, such as DNS-based attacks, consistently pose 

threats to digital devices. The Domain Name System (DNS) plays a pivotal role in internet 

infrastructure by converting user-friendly domain names into IP addresses, but this crucial role 

also makes it an attractive target for cyberattacks. Malicious actions via DNS can include 

techniques like DNS spoofing, cache poisoning, tunneling, and fast-flux networks, which can 

result in data breaches, malware spread, and service interruptions. 

 

To combat these threats, DNS threat detection systems are the primary defense, aimed at 

determining if a DNS query or response is harmful or safe. Traditional systems utilize shallow 

machine learning algorithms such as decision trees, support vector machines, and naive Bayes 

classifiers, with their success heavily hinging on the quality of feature extraction. However, 

selecting and extracting features is often cumbersome, inaccurate, and demands considerable 

domain expertise. 

 

Deep learning, the new frontier of machine learning algorithms, has gained traction because it 

can extract complex, high-level features that automatically enhance accuracy. Existing deep 

learning-based DNS threat detection systems predominantly leverage Recurrent Neural 

Networks (RNNs) using DNS query and response data. Despite the high accuracy of RNNs, 

they are susceptible to adversarial attacks, where attackers can mimic an RNN within the 

detection system. By introducing extraneous or disguised DNS queries, attackers might evade 

RNN detection, raising concerns about RNNs’ reliability in DNS threat detection. 

This project targets examining the resilience of a hybrid model architecture against various 

DNS-based attacks. The model integrates multiple layers, including dense layers, batch 

normalization, dropout, and custom layers such as Capsule Layer and Transformer Encoder. 

The procedure starts with converting DNS query data into a compatible format and applying a 

CNN to understand its features and patterns. Since CNNs generally need fixed-size inputs and 

DNS query data often varies in size and structure, Spatial Pyramid Pooling (SPP) is utilized to 

allow CNN to process inputs of any size. This hybrid framework, which also includes LSTM and 

GRU components, is intended to deliver a more robust solution for detecting and mitigating 

different DNS-based attacks in malicious DNS detection. 

 

In the context of smart cities, this approach has specific applications such as traffic control 

signaling and automated vehicle systems, where dependable, real-time data exchange is 

crucial. Traffic control and automated systems necessitate uninterrupted DNS resolutions to 

ensure a continuous flow of data among IoT devices like traffic lights, sensors, and 

Previous Works 

In their paper Deep Learning for DNS-based Threat Detection: A Review, Y. Nataraj, V. 

Yegneswaran, P. Porras, and J. Zhang thoroughly explore different deep learning 

approachessuch as CNNs, RNNs, and autoencoders, while tackling challenges and considering 

future research pathways [1]. Likewise, S. Vasan, B. Alazab, and R. Buyya, in their review 

Malicious DNS Detection using Deep Learning: A Systematic Review, scrutinize deep learning 
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methodologies for detecting harmful DNSs, emphasizing architectural frameworks, datasets, 

and evaluation metrics [2]. A. Ferrag, L. Maglaras, and A. Argyriou focus on the usage of deep 

learning for safeguarding DNS in critical infrastructures in their extensive study Survey on Deep 

Learning Methods for DNS Security in Critical Infrastructures, examining effectiveness and 

implementation difficulties [3]. In the analysis DNS-based Threat Detection Using Deep 

Learning: A Bibliometric Analysis by X. Wang, J. Li, and K. Zhang, the team delves into research 

trends in DNS threat detection field, identifying key research directions through a bibliometric 

approach [4]. F. Gharibian and A. Ghorbani present a comprehensive analysis in A 

Comprehensive Survey on Machine Learning for DNS Security, contrasting machine learning 

with deep learning methodologies and revealing limitations of traditional techniques [5]. 

Additionally, S. Hou, Y. Saas, L. Chen, and Y. Ye, in Deep Learning-based Approaches for DNS 

Threat Detection: A Survey, classify DNS threat detection strategies, assessing both their 

efficiency and computational needs [6]. Furthermore, H. Yu, L. Sun, and X. Luo propose a deep 

learning framework for identifying DNS anomalies in their research DNS Anomaly Detection 

with Deep Learning, testing its effectiveness on extensive DNS datasets [7]. R. Smith and D. 

Wei, in their examination Challenges in Deep Learning for DNS Security, discuss the technical 

and computational issues encountered with deep learning for DNS security, offering potential 

solutions for improving scalability [8]. In another study, A. Bhatia and N. Kumar analyze RNN 

models for real-time detection of DNS threats in Real-time DNS Threat Detection using RNNs, 

addressing latency and optimization tactics [9]. Z. Chen, M. Li, and X. Zhao contribute to the 

discourse with their comparative analysis DNS Traffic Classification using Deep Learning, 

weighing the merits of various deep learning models in classifying DNS traffic and recognizing 

malicious domains [10]. Y. Zhang and T. Chen, in their study Anomaly Detection in DNS Traffic 

with CNNs, emphasize the role of feature extraction in detecting anomalies within DNS traffic 

[11]. Conversely, S. Prakash and L. Zhang’s work Autoencoders for DNS Threat Detection  

reviews autoencoders, underscoring the use of reconstruction error as an anomaly detection 

metric [12]. H. Wei, X. Xu, and L. Fang explore a holistic deep learning strategy for identifying 

DNS-related threats in End-to-End Deep Learning for DNS-based Threat Detection, evaluating 

the model’s responsiveness [13]. When considering hybrid models, P. Wu, K. Tan, and M. 

Chang study combinations of CNNs and RNNs for DNS security in Hybrid Deep Learning Models 

for DNS Security  offering an evaluative comparison of model efficiencies [14]. E. Ivanov and 

T. Chen put forward a classification of DNS threat detection strategies in A Taxonomy of DNS-

based Threat Detection Techniques, focusing on advancements in deep learning technologies 

[15]. A. Mitra and H. Jain review generative models for DNS anomaly detection in their survey 

Survey of Generative Models for DNS Anomaly Detection, highlighting the benefits of adopting 

variational autoencoders [16]. B. Yang and C. Liu, in Transfer Learning for DNSbased Threat 

Detection, address the application of transfer learning in DNS threat detection, spotlighting its 

role in minimizing training durations [17]. L. Fan, Y. Dong, and M. Liu examine multimodal 

deep learning techniques for integrating DNS and network data in Multimodal Deep Learning 

for DNS Security, aiming to improve threat assessment capabilities [18]. Z. Li and F. Zhao, in 

their discussion Feature Engineering in Deep Learning for DNS Threat Detection , focus on 

feature engineering methods specially designed for DNS data, underscoring their impact on 
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enhancing model precision [19]. R. Patel and T. Sun propose leveraging reinforcement learning 

for adaptive DNS security in Reinforcement Learning for Adaptive DNS Security, introducing 

dynamic response strategies for threat identification [20]. K. Wu and S. Fang suggest 

hierarchical deep learning structures for detecting DNS attacks in Hierarchical Deep Learning 

Models for DNS Attack Detection, drawing comparisons with conventional flat models [21]. G. 

Lee and S. Kim’s work Time-Series Analysis for DNS Threat Detection reviews the application 

of time-series models, including RNNs and LSTMs, for monitoring DNS data to pinpoint 

malicious behavior [22]. M. Singh and V. Chopra emphasize the role of explainable AI in DNS 

security in Explainable AI for DNS Security, providing insights into model interpretability during 

threat discernment [23]. R. Goel and A. Singh address privacy-preserving techniques in 

PrivacyPreserving Deep Learning for DNS Detection, with a focus on data anonymization 

methods [24]. J. Chou and K. Chu utilize deep learning for fast-flux DNS detection in A Deep 

Learning Approach for Detection of Fast-Flux DNS, centering on model efficacy in hostile 

environments [25]. H. Liu and Q. Ma provide a thorough comparison of performance evaluation 

for different deep learning models in DNS detection in Performance Evaluation of Deep 

Learning Models for DNS Detection  [26]. Finally, Y. Wang and Z. Chen examine methodologies 

for identifying spatial and temporal patterns in DNS data in Temporal and Spatial Pattern 

Detection in DNS using DL, which are critical for uncovering intricate threats [27]. In DNS 

Threat Detection in IoT Environments, C. Wong and F. Zhou review applications of deep 

learning for DNS threat detection tailored for IoT settings, focusing on lightweight models for 

resourcelimited devices [28]. V. Zhang and P. Liu investigate merging blockchain with deep 

learning for DNS security in Deep Learning and Blockchain for DNS Security, exploring the 

advantages of decentralized threat management [29]. Lastly, S. Verma and T. Chang explore 

one-shot learning methods for DNS threat identification in A Review of Oneshot Learning for 

DNS Threat Detection, beneficial particularly for situations with minimal malicious data samples 

[30]. N. Zhao and L. Wang, in their study Domain Generation Algorithm (DGA) Detection using 

Deep Learning, concentrate on deep learning models for recognizing Domain Generation 

Algorithms, addressing typical DNS tunneling and botnet communication issues [31]. 

 

Background 

Deep learning has led to notable achievements across multiple fields, such as image and 

speech recognition, and it has applications in natural language processing. In addition to these 

areas, deep learning methods are also being used in the realm of cybersecurity, specifically in 

malware detection systems, to improve detection accuracy and processing speed. In parallel, 

the concept of smart cities, which integrate technology to enhance the efficiency of urban 

services, presents new opportunities and challenges. For instance, the growth of electric 

vehicles (EVs) in smart cities is part of a shift towards sustainable urban mobility. However, 

the integration of IoT devices in smart cities poses security challenges, such as DNS attacks 

that can disrupt communication networks. Therefore, employing advanced techniques like 

deep learning could also be beneficial in addressing such vulnerabilities within the smart city 

infrastructure. 
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Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) are a type of deep learning algorithm particularly well-

suited for processing grid-like data structures, such as images. They are highly acclaimed for 

their ability to automatically and adaptively learn spatial hierarchies of features through 

backpropagation by using multiple building blocks such as convolution layers, pooling layers, 

and fully connected layers. CNNs are particularly appropriate for malware detection because 

they are inherently designed to recognize patterns and can potentially identify malicious code 

features that are location invariant. This means that CNNs can detect various forms of the 

same pattern, even if the pattern appears at different positions in the data. When considering 

malware detection using CNNs, the core idea is to convert executable or code segments into 

an image-like representation. Once transformed, CNNs can process the ’image’ to extract 

relevant features. Such an approach helps in capturing spatial hierarchies and patterns that 

are more difficult to model using traditional text-based methods, like Recurrent Neural 

Networks (RNNs). One of the advantages of CNNs in this context is their ability to disregard 

the exact location of the features (malicious patterns), focusing instead on their appearance, 

and thereby making CNNs more robust to certain types of manipulation aimed at concealing 

malware. However, the challenges of effectively representing malware data as images and 

handling varying input sizes highlight current barriers in applying CNNs directly to malware 

detection. These challenges also explain why this application remains underexplored in 

scientific literature. 

 

 

 
 

Recurrent Neural Networks 

Recurrent Neural Networks (RNNs) are particularly well-suited for malware detection systems 

because they excel at processing sequential data. In the context of malware detection, the 

sequence of machine instructions and API calls within a malware sample can be crucial for 

identifying its malicious nature. RNNs process each element of a sequence in order, maintaining 

https://glintopenaccess.com/Cognitive/Home
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a ’memory’ of previous elements to inform the interpretation of current ones. This capability is 

analogous to how RNNs are used in natural language processing for tasks like text 

classification, where understanding the sequence of words provides context and meaning. In 

malware detection, each API call or instruction is encoded as a one-hot vector, representing it 

with a dimension corresponding to the total number of possible calls or instructions. The 

sequence of such vectors is input into the RNN, which can then discern patterns indicative of 

malware activities. Additionally, advanced architectures like LSTM (Long Short-Term Memory) 

networks are often used because they can manage longer sequences of information without 

the standard RNN issues related to long-term dependency learning. LSTM can effectively 

prioritize important parts of a sequence, which is valuable for recognizing complex patterns in 

malware. Despite these advantages, RNNs have limitations, such as difficulty generalizing 

beyond their learned language environments. This leaves them vulnerable to adversarial 

attacks, where irrelevant API calls might be inserted to deceive the detection model. Such 

challenges highlight the ongoing need for research and enhancement in RNN-based malware 

detection. 

 

 

Dense Neural Networks 

Dense neural networks (DNNs) are particularly appropriate for malware detection systems due 

to their ability to learn complex patterns and representations from data. In the context of such 

systems, the raw features derived from machine instructions and API calls are input into the 

network. These features are usually encoded as vectors, with each feature highlighting a 

specific element of the API calls or instructions. DNNs are comprised of several layers of 

neurons where each neuron is fully connected to every neuron in the following layer. This 

universal connectivity allows DNNs to model intricate and non-linear dependencies in data 

thanks to the learned weights and biases. By applying non-linear activation functions, they can 

https://glintopenaccess.com/Cognitive/Home
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capture complex relationships which are vital for distinguishing between benign and malicious 

inputs. The final layer of a DNN outputs a classification, determining whether input data is 

malicious or not. Thus, these networks are effectively capable of handling the complexity 

involved in distinguishing between different types of files on a dataset rich with features from 

malware behavior. However, there are challenges intrinsic to using DNNs for this task. They 

require a large amount of labeled data to fine-tune the network parameters. Furthermore, 

training deep networks can be computationally demanding. DNNs also risk vulnerability from 

adversarial attacks where slight manipulations to inputs can lead to inaccurate classifications. 

Such vulnerabilities highlight the need for robust training and techniques to mitigate adversarial 

risks. Additionally, DNNs do not inherently track or consider the sequence in which inputs are 

presented, which can be critical in malware detection where the order of API calls is significant. 

For cases that involve sequential dependencies, alternative or complementary methods like 

convolutional neural networks (CNNs) or recurrent neural networks (RNNs) may offer improved 

performance. In summary, while DNNs provide a solid framework for building malware 

detection models by leveraging complex pattern learning, careful consideration of their 

limitations can help enhance their robustness and applicability to real-world scenarios. 

 

• :

 
• Gradient of the loss with respect to the weight. 

 

Proposed Approach 

Our proposed malware detection system leverages a hybrid Convolutional Neural Network 

(CNN) and Recurrent Neural Network (RNN) architecture, specifically designed to process 

sequential data such as API calls or machine instructions for robust malware identification. 

 

Model Architecture and Layer-wise Formulation 

The model architecture consists of multiple layers of 1D convolutions, simple RNN units, and 

dense layers, interspersed with activation functions, pooling, and dropout layers. Let X ∈ RN×T×F 

be the input tensor, where N is the batch size, T is the sequence length, and F is the number 

of features per time step. 

https://glintopenaccess.com/Cognitive/Home
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Convolutional Layers (Conv1D) 

The model employs four 1D convolutional layers. For a given convolutional layer l, the 

operation can be described as: 

Y l = f(Wl ∗ Xl + bl) 

where Wl ∈ Rk×Fin×Fout is the kernel tensor, k is the kernel size, Fin and Fout are the number of 

input and output features respectively, bl ∈ RFout is the bias vector, and f is the activation 

function (LeakyReLU in this case). 

 

These layers act as efficient feature extractors, capturing local patterns and motifs in the input 

sequence. In the context of DNS detection, they can identify short sequences of API calls or 

instructions that are indicative of malicious behavior. The decreasing number of filters (128 to 

64) allows the model to start with detecting a wide range of low-level features and gradually 

focus on more specific, high-level features. 

 

LeakyReLU Activation 

LeakyReLU activation is defined as: 

 
where α is typically a small constant (e.g., 0.01). 

LeakyReLU helps mitigate the ”dying ReLU” problem, allowing a small gradient when the unit 

is not active. This is crucial in malware detection where subtle features might be important, 

ensuring that neurons remain responsive to various patterns throughout the training process. 

 

Max Pooling 

Max pooling layers reduce the spatial dimensions. For a pooling window of size p, the operation 

is: 

 
Max pooling helps in achieving translation invariance and reducing the spatial dimensions of 

the feature maps. In malware detection, this allows the model to identify important features 

regardless of their exact position in the sequence, which is valuable as malicious patterns might 

occur at different locations within the code or API call sequence. 

 

Dropout 

Dropout layers randomly set a fraction of inputs to 0 during training. For a given input x and 

dropout rate p: 
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Dropout is a crucial regularization technique that prevents overfitting. In malware detection, 

where the model needs to generalize well to unseen malware variants, dropout helps in 

creating a more robust model that doesn’t rely too heavily on any specific features. 

 

Simple RNN Layers 

The model includes four Simple RNN layers. For a Simple RNN layer at time step t: 

  
where ht ∈ Rd is the hidden state, xt ∈ RFin is the input, Wxh ∈ Rd×Fin, Whh ∈ Rd×d, and bh ∈ Rd are 

learnable parameters. 

Simple RNN layers are well-suited for capturing sequential dependencies in the data. In 

malware detection, they can model the temporal relationships between API calls or 

instructions, which is crucial for identifying complex malicious behaviors that unfold over time. 

The decreasing number of units (128 to 64) allows the model to capture both fine-grained and 

more abstract temporal patterns. 

 

Dense Layers 

The final stages of the model include dense layers: 

Odense = f(W X + b) 

The dense layers serve as the classification head of the network. The two layers with 32 units 

allow the model to learn complex, non-linear combinations of the features extracted by the 

convolutional and RNN layers. The final layer with 3 units suggests a 3-class classification 

problem, which could represent different categories of malware or perhaps ”benign”, 

”malicious”, and ”suspicious” classifications. 

 

Detailed Layer Specifications 

• Conv1D layers: 

o Conv1D1, Conv1D2: 128 filters 

o Conv1D3, Conv1D4: 64 filters 

• SimpleRNN layers: 

o  SimpleRNN1, SimpleRNN2: 128 units 

o  SimpleRNN3, SimpleRNN4: 64 units 

• Dense layers: 

o Dense1, Dense2: 32 units 

o Dense3: 3 units (final classification layer) 

 

Model Complexity and Training 

The total number of trainable parameters in the model is 124,963, distributed across the 

various layers as shown in the provided model summary. The model is trained using 

backpropagation through time (BPTT) for the RNN components. The loss function L (likely 

cross-entropy for classification) is minimized using an optimizer such as Adam: 
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where θ are the model parameters, η is the learning rate, and mt and vt are the 

first and second moments of the gradients. 

 

Architectural Appropriateness for Malware Detection 

This hybrid CNN-RNN architecture is particularly well-suited for malware detection based on 

sequential data: 

1. The convolutional layers capture local patterns and motifs in the API calls or instruction 

sequences. 2. The RNN layers model long-term dependencies and the overall structure of the 

malicious behavior. 3. The multiple stages of convolution, pooling, and RNN allow the model 

to learn hierarchical representations, from low-level patterns to high-level behavioral 

characteristics. 4. The use of LeakyReLU and dropout throughout the network promotes robust 

learning and helps prevent overfitting, which is crucial in the ever-evolving landscape of 

malware. 5. The final dense layers allow the model to make complex decisions based on all 

the extracted features, enabling accurate classification of malware. 

 

This architecture’s ability to process sequential data while learning both local and global 

patterns makes it a powerful tool for identifying sophisticated malware that may try to evade 

simpler detection methods. 

 

Experimental Setup 

The proposed model architecture integrates a diverse set of neural network layers designed to 

capture intricate patterns indicative of malicious behavior in files. The architecture commences 

with an auxiliary input layer tailored to accommodate feature dimensions extracted from the 

dataset. This foundational layer plays a pivotal role in shaping the input data structure. The 

model incorporates multiple dense (fully connected) layers, each configured with an identical 

number of units. These layers are instrumental in learning intricate representations of input 

features. Following each dense layer, batch normalization is applied to standardize and 

expedite the training process by normalizing the outputs. The ReLU (Rectified Linear Unit) 

activation function introduces non-linearity into the model, enhancing its ability to learn 

complex patterns. Dropout layers are strategically inserted to mitigate overfitting by randomly 

deactivating a fraction of neurons during training. 

 

Temporal dependencies and sequential patterns are effectively modeled using LSTM layers, 

pivotal for capturing evolving behaviors over time. Graph layers are introduced to model 

intricate feature interactions, enriching the model’s capability to discern complex 

dependencies. Concatenation layers consolidate outputs from various segments of the model, 

amalgamating diverse features and representations acquired during training. Subsequent 

dense layers, integrated with batch normalization, ReLU activation, and dropout, further refine 

and process learned features. The final layer of the model comprises two units, leveraging a 

softmax activation function to yield probabilistic outputs for binary classification (malware or 

benign). 
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Training and Evaluation 

For this classification assignment, categorical cross-entropy is employed as the loss function 

due to its appropriateness in quantifying the difference between the predicted and actual 

distributions in classification scenarios. The Adam optimizer is chosen for its efficiency and 

capability to adjust the learning rate. 

 

Results 

The model’s effectiveness was assessed using a range of metrics, including accuracy, a 

confusion matrix, and a comprehensive classification report. These metrics were computed on 

a separate test set to validate the model’s generalization ability. 

 

Accuracy and Loss 

Throughout the training, accuracy and loss metrics were continuously tracked. The model 

exhibited a consistent increase in accuracy coupled with a decrease in loss, reflecting successful 

learning and generalization. The accuracy is determined using this formula: 

 
with TP denoting true positives, TN as true negatives, FP as false positives, and FN as false 

negatives. 

 

Confusion Matrix 

Through a Figure we illustrate the confusion matrix, which provides a comprehensive analysis 

of the rates of true positives, false positives, true negatives, and false negatives. It offers 

valuable insights into the performance of the classification for each category: - Benign: True 

positives = 81,664; False negatives = 400; False positives = 8,588. Malicious: True positives 

= 40,595; False negatives = 5,245; False positives = 4,139. - Suspicious: True positives = 

4,257; False negatives = 3,343; False positives = 513. 

 
Figure 1: Confusion Matrix of Different Classes 

 

https://glintopenaccess.com/Cognitive/Home


   12  
   

  

 
 

Cogn Comput Ext Realities  

Validation Metrics 

The metrics derived from the validation dataset reinforce the model’s reliability: Accuracy: 

90.27% - Precision: 90.20% - Recall: 90.27% - F1-score: 89.17%,The alignment in these 

metrics between the training and validation datasets indicates that the model effectively 

generalizes, demonstrating strong performance across every class. 

 

Classification Report 

The comprehensive classification report displayed through a Figure contains figures for 

precision, recall, F1-score, and support across the three categories: - Class 0 (Benign): 

Precision is 90%, Recall is 99%, F1-score is 95%, with Support at 82,212. - Class 1 (Malicious): 

Both Precision and Recall are 90% and 88% respectively, resulting in an F1-score of 89%, 

while Support equals 46,205. - Class 2 (Suspicious): 

With Precision at 89%, Recall at 36%, and F1-score at 52%, Support is 11,739., 

  

 
Figure 2: Classification Report for Proposed Model in the Validation Phase 

 

Overall Performance 

According to table 1 Accuracy is 90% - Macro Average: Precision is 90%, Recall is 74%, F1-

score is 78%. - Weighted Average: Precision is 90%, Recall is 90%, F1score is 89%. The macro 

average is derived from averaging the precision, recall, and F1-scores of each class: 
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where C represents the total classes, and the metric refers to precision, recall, or  

F1-score.,The weighted average considers both the precision, recall, and F1-scores, 

balanced by the support (total true instances across each class): 

 
 

Table 1: Comparison of Model Performance with Existing Studies 

 
 

Conclusion 

The proposed model architecture, which integrates dense neural networks, specialized capsule 

layers, and attention mechanisms, offers a robust solution for malware detection. By capturing 

both local and global patterns, the model effectively distinguishes between benign and 

malicious files. The incorporation of diverse neural network layers enables the model to learn 

intricate patterns indicative of malicious behavior, even in adversarial scenarios. 

 

The evaluation metrics, including accuracy, confusion matrix, and classification report, confirm 

the model’s efficacy. The steady increase in accuracy and the corresponding decrease in loss 

during training indicate effective learning and generalization capabilities. The confusion matrix 

and classification report further validate the model’s robustness, with high precision, recall, 

and F1 scores across both classes. 

 

Overall, the proposed architecture successfully addresses the challenge of malware detection 

by leveraging advanced neural network techniques and attention mechanisms. 

 

Future Work 

To further enhance the performance and applicability of the model, several avenues for future 

work are proposed: Reconstruction of the enterprise environment: Dedicating time to 

reconstructing an enterprise environment for reliable data collection and realistic testing will 
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provide more comprehensive and representative datasets, improving the model’s robustness 

and generalization capabilities. 

Multi-Attention Head Transformers: Experimenting with training multi-attention head 

transformers for URL detection could enhance the model’s ability to detect a wider range of 

malicious behaviors. 

 

Adaptation to Other Malicious Attacks: Adapting the model to other types of malicious attack 

or developing new models specifically tailored to different attack vectors will broaden the scope 

of its applicability. 

Larger data sets: Sourcing and retraining the model with larger datasets will provide a more 

extensive learning experience, potentially improving its accuracy and generalizability. 

 

Dynamic Rule Outputs: Improving the prevention engine to support more dynamic rule outputs 

will enhance the model’s ability to respond to evolving threats in real time. 

 

Real-Time Prevention Mechanisms: Implementing real-time prevention mechanisms through 

host-based network monitors will enable the model to provide immediate protection against 

detected threats, increasing its practical utility in live environments. 

 

By pursuing these future directions, the model can be further refined and expanded, offering 

even more effective malware detection and prevention capabilities. 
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