Journal of Economic Development and Global Markets

Volume 1, Issue 1
Research Article

Date of Submission: 12 September, 2025 Date of Acceptance: 06 October, 2025 Date of Publication: 09 October, 2025

Foreign Exchange Shocks and Economic Growth in Selected Small Very Open Economies

Elton Bollers¹ and Tarron Khemraj²

¹The University of the West Indies, Trinidad and Tobago and Research Summer Intern 2016, Central Bank of Barbados, Barbados

²New College of Florida, United States and Research Associate, Central Bank of Barbados, Barbados

*Corresponding Author: Elton Bollers, The University of the West Indies, Trinidad and Tobago and Research Summer Intern 2016, Central Bank of Barbados, Barbados.

Citation: Bollers, E., Khemraj, T. (2025). Foreign Exchange Shocks and Economic Growth in Selected Small Very Open Economies. *Econ Dev Glob Mark*, 1(1), 01-20.

Abstract

Using time-series econometric techniques, this research examines the relationship between foreign exchange shocks and economic growth. These shocks result from a trend stationary process of the level of foreign exchange given the economic structure of the economies under study. The empirical model is motivated by a theoretical framework showing the connection between the localized foreign exchange market and economic growth. The estimation is conducted for ten small very open economies: The Bahamas, Barbados, Guyana, Jamaica, St. Lucia, Belize, Mauritius, Grenada, Fiji and Trinidad and Tobago. The results indicate a noticeable effect of foreign exchange shocks on economic growth. The estimates reveal that the growth of physical capital is also important in determining economic growth.

Keywords: economic growth, foreign exchange, ARDL, monetary policy JEL codes: O47, F31, C13, E5

Introduction

This research explores the foreign exchange-growth nexus by calculating the effect of shocks on economic growth. The level of foreign exchange and growth would tend to be endogenous to each other, but the foreign exchange shocks would be exogenous, as such shocks emerge mainly from international events for a small economy. This study is concentrated on a selected list of ten small very open economies, namely The Bahamas, Barbados, Belize, Fiji, Grenada, Guyana, Jamaica, St. Lucia, Mauritius and Trinidad and Tobago. Small open economies were chosen as they have many similarities and peculiar reserve policies compared to larger economies.

This study utilizes autoregressive distributed lagged (ARDL) models, to examine the phenomenon in the aforementioned small very open economies, while controlling for other recognizable determinants of economic growth, using time series data spanning 1970 to 2014. The bound testing methodology of Perasan et al. will be utilized to check for long run relationships among the variables [1].

The importance of foreign exchange in promoting economic growth is well documented [2-6]. Investigating the impact of the foreign exchange reserves accumulation on long-run economic growth, conclude that while the accumulation is necessary for economic growth, it is not sufficient, because other factors such as institutions and investment climate matter. However, insufficient levels of foreign exchange could result in an unstable exchange rate that makes it difficult to price future investment decisions. In the Caribbean context, Worrell et al. calculate the extent to which foreign currency constraints economic growth in three economies – Barbados, Jamaica and Trinidad and Tobago [7]. Summarizing his previous research outlining the balance of payments constrained growth, Thirlwall argues that economic growth of small open economies is constrained by the current account of the balance of payments [8]. Therefore, in the long run, sustainable economic growth for small open economies would depend primarily on foreign currencies that are necessary for importing technology goods, intermediate products and fuels.

Not having a globally convertible currency means small states are often buffeted by exogenous shocks. Random shocks, which can be positive or negative, tend to have various effects on the economy. It is widely known that most economies, including the large emerging ones, let alone small very open economies, do not possess a convertible or generally acceptable currency in the global financial centres. According to Moore and Glean, to offset the adverse effects of exogenous shocks in small very open economies, Central Banks would need to demand larger quantities of foreign reserves so that these can be drawn upon until the macro environment improves or domestic policy response can be implemented to redress negative shocks [9].

The core hypothesis of this research is that positive shocks are good for economic growth while negative ones are harmful. For small very open economies positive shocks can result from favourable commodity prices. Negative ones can come from higher oil prices for the oil-importing small economy.

This research is organized as follows. Section 2 gives the Background. Section 3 presents the theoretical motivation. Section 4 provides is the empirical strategy utilized. Section 5 presents the empirical findings and analysis. Section 6 is the conclusion and policy implications.

Background Information

The section presents some stylized facts relating to the trends of total reserves and foreign exchange shocks. It is evident from Figure 1 that there is a persistent long-term upward trend in the level of foreign exchange reserves held by the central banks of the countries being considered in this study. For all the economies, except Trinidad and Tobago, there has been a relatively short deviation away from the upward long-term trend. In the case of Trinidad and Tobago, for the period 1973 to 1982, there was a long deviation from the trend, after which period the level settles into a persistent upward trend. This observation implies that the equation of motion characterizing the level of foreign reserves is likely to be a trend stationary process. The trend stationary feature reflects an underlying economic structure in which ever-

increasing GDP is accompanied by greater imports and exports, thereby requiring a larger level of foreign exchange reserves to sustain a credible amount of import cover.

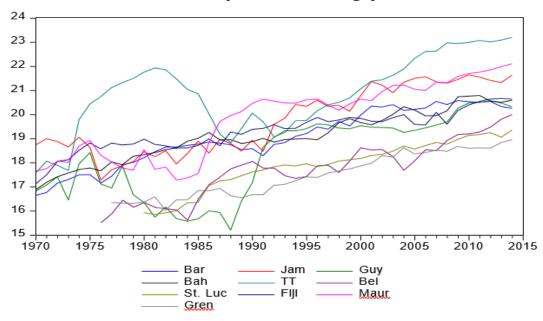


Figure 1: International Reserves (Measured in Logs)

Source: World Bank

The deviations from the trend probably resulted from shocks emanating from international events such as a commodity price shock, particularly shocks to oil price and commodity prices. These shocks can be positive or negative. For example, Trinidad and Tobago (TT) experienced periods of persistent positive shocks to the level of international reserves as the world market price of oil increased. The other small economies would face many negative shocks and shorter periods of positive shocks, except for The Bahamas that experienced a long period of persistent positive deviations from trend over the period 1979 to 1986. From 1973 to 1982, TT experienced a long period of positive shocks, while the other countries experienced mainly periods of negative shocks and a few years of positive ones. Since most of the countries are tourism-based economies, the business cycles in the large advanced economies would impose positive and negative shocks on the level for international reserves.

The estimated shocks are reported in Figure 2. These were calculated using an autoregressive model with a deterministic trend component, as explained below. The residuals of the equation *Econ Dev Glob Mark*

measure the shock component. One noticeable feature of Figure 2 is the relatively more severe swings in the shocks of the 1970s and early 1990s. The period of reduced volatility of the shocks coincides with some period of the Great Moderation that started around the mid-1980s until the Great Recession of 2008. This feature supports the idea that the shocks are exogenous to the domestic economic growth of the small very open economies. As stated, this research argues that the shocks determine economic growth of the small economies. This type of causality cannot be deciphered by Granger predictability tests. Later we estimate an augmented Neo-Classical growth model in the time series context. In other words, economic theory motivates our empirical model instead of predictability tests.

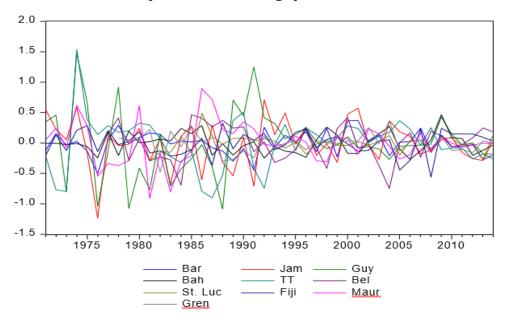


Figure 2: Estimated Shocks (Measured in Logs)

Source: Authors' calculation using World Bank data

Theoretical Motivation

Central to our analysis is the stock of foreign exchange traded in the domestic market. The stock traded can be seen as a finite quantity and therefore a proxy for the foreign exchange constraint. Changes to the stock of foreign exchange will influence economic growth by determining the kind of imports necessary to induce the growth process. The local foreign exchange market is expressed by Figure 3 (note: local currency units/US\$). In equilibrium, the

market's expected exchange rate (e^F) is equal to the exchange rate anchor of the central bank (e^A) at the finite traded stock or the constraint. The constraint is indicated by a vertical line (at F) at which point the market fully adjusts its expectation such that $e^F = e^A$. The quantity F (where F stands for foreign reserves) also pins down the short-term supply and demand curves. We assume that the short-term demand and supply curves take the usual downward and upward slopes, respectively, although the elasticity may vary. Along the vertical line the market's expectation is fully adjusted.

Nominal exchange rate (Local currency unit/US\$) $e^{A} = e^{E} \qquad S_{F}$ D_{F} FX rate anchor e^{A} Equilibrium

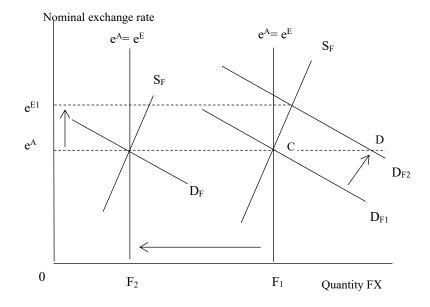
F

0

Figure 3: The Foreign Exchange Market in Equilibrium

The demand and supply curves may shift and when they do the market's expectation deviates from the central bank's exchange rate anchor or target. This is not the end of the sequence of events as the shift in short-term demand or supply will influence the long-term quantity of the *F*. In other words, the *F* would also shift inward or outward after expectations have fully adjusted.

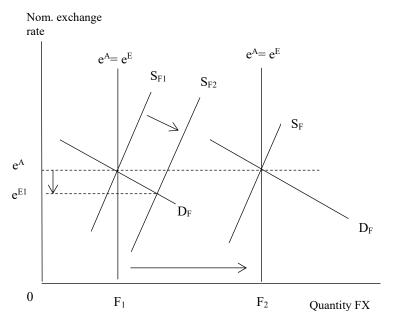
Quantity FX


This research explores how a change in F would influence economic growth. It is helpful to clarify how F shifts inward or outward when there is a deviation of e^F from e^A . A more precise definition of the F would further illustrate the idea of a shift in the finite quantity

in the long run. The finite quantity of foreign currency available to the domestic economy is: F = FXR - ND

Here *FXR* means the level of central bank's foreign exchange reserves and *ND* means the net demand in the market occurring at the exchange rate target.¹ If there is a positive net demand (implying $e^{F} > e^{A}$), the *F* declines and shifts inward. On the other hand, if there is a negative net demand in the market (implying $e^{F} < e^{A}$), the finite stock of hard currencies shifts outward.

Assume that there is an increase in the demand for the finite quantity of foreign currency in the local market, possibly because of an increase in oil price (the oil importing small economy). The demand shifts outward from D_{F1} to D_{F2} (see Figure 4). The market finds the anchor less credible and anticipates a devaluation of the local currency ($e^{E1} > e^4$). In this situation there is a positive net demand or a shortage at the anchor (the distance CD). If the central bank wants to preserve the anchor it has to sell foreign exchange from its official international reserves, thereby shifting outward the supply curve unit it reaches point D (supply curve not drawn). The positive net demand and the depletion of central bank's stock of foreign reserves (FXR) implies the vertical line representing the FTS shifts inward from F_1 to F_2 . The new FTS now anchors a new set of short-term demand and supply curves. The exact opposite sequence of events would occur if there is an inward shift in the demand for FX in the local market. In this case, there will be an expectation of appreciation and a negative net demand (a surplus), allowing the central bank to accumulate foreign reserves and driving outward the finite traded stock.



¹ Equation 1 implies interesting dynamic adjustments as the level of foreign exchange adjusts towards equilibrium. This is the work of future research.

Another outcome could be an outward shift in the short-run supply of FX (from S_{F1} to S_{F2}). This scenario is indicated by Figure 5. It now results in a negative net demand or surplus at the anchor rate. The market expects the rate to appreciate since $e^{E1} < e^A$. The central bank has the opportunity to accumulate foreign reserves. It increases its demand and shifts out the demand curve (not drawn) to preserve the anchor. The negative net demand and central bank accumulation of FX result in an increase of the finite stock available to the economy for importing (outward shift from F_1 to F_2). A new set of short-run demand and supply curves are anchored at the higher level of finite stock of foreign exchange. The exact opposite will occur if the supply curve shifts inward, perhaps because of a fall of key export commodity prices or outflow of short-term capital owing to higher US interest rate.

Figure 5: Positive Supply Shock and Outward Shift of Finite Traded Stock of FX

Empirical Strategy

The graphical illustrations allow us to specify a general time-series growth model as follows $g_{Yt} = f\left(\varepsilon_{Ft}, g_{Pt}, g_{Kt}\right)$

In this model g γ_t represents the growth of real GDP over time and \cdot F_t is the shock to foreign exchange constraint (the main variable in which we are interested). Based on the growth literature surveyed, we control for population growth rate $(g p_t)$ and the rate of growth of physical capital $(g K_t)$. Time series data spanning the period 1970 – 2014 are employed to estimate the effect of foreign exchange shocks on economic growth in the following small very open economies: The Bahamas, Barbados, Guyana, Jamaica, St. Lucia, Belize, Mauritius, Grenada, Fiji and Trinidad and Tobago. The sources of the data are given in appendix A. Our methodology is twofold.

Stage 1 is the estimation of an autoregressive (AR) model to extract the shock component from the foreign exchange reserve. Stage 2 will be the estimation of an autoregressive

distributed lag (ARDL) model to capture the effect of the foreign exchange shock on economic growth.

Why the ARDL model? ARDL modelling approach has become popular recently.² It was selected because its flexibility and ability to be applied to variables that have different orders of integration i.e. a combination of I (0) and I (1) variables (Pesaran & Pesaran, 1997).³ It also has great small sample properties. By means of a simple linear transformation, a dynamic error correction model (ECM) can be derived from this ARDL model (Banerjee, Dolado, Galbraith, & Hendry, 1993). This dynamic ECM incorporates short-run dynamics with long-run equilibrium while maintaining long-run information.

Stage 1 of the empirical strategy involves estimating an autoregressive model with a deterministic time trend as follows

$$\log(F_t) = \alpha_0 + \alpha_1 \log(F_{t-1}) + \gamma t + \varepsilon_{Ft}$$

Where a_0 is the constant, a_1 is the parameter of the model, t is a trend and ϵ is a random shock term. For each economy a linear trend was sufficient to model the long-term feature of international reserves. Unfortunately, we could not obtain data on the net demand in the foreign exchange market for each country; therefore, the central bank's stock of international reserves (including gold) is used as the proxy. The residual of this model is then used as a proxy for the foreign exchange shock. This proxy is good enough to reflect the shifts occurring in the local foreign currency market. For example, the central bank is able to accumulate foreign reserves when there are positive shocks occurring in the local market. The opposite occurs when there are negative shocks impacting on the local market.

Stage 2 involves estimating an ARDL model expressed in generalized form (equation 2). For the purpose of this time-series study, a production function that is augmented with several

shift variables is employed, as emphasized by Barro and Sala-i-Martin and Bhaskara Rao [10,11].⁴ In extending the endogenous growth theory,⁵ Barro and Barro (1999) examined the significance of control variables [12,13]. To assess the empirical effect of foreign exchange shocks on economic growth, an Autoregressive Distributed Lag (ARDL) taking the following unrestricted structure is estimated: $g_{Yt} = \varphi_0 + \sum_{i=1}^{l} \varphi_i \, g_{Yt-i} + \sum_{i=0}^{m} \beta_i \, \varepsilon_{Ft-i} + \sum_{i=0}^{n} \theta_i \, g_{P-i} + \sum_{i=0}^{k} \lambda_i \, g_{K-i} + \nu_t$ (4)

Where φ , \cdot , \cdot and \cdot are parameters to be estimated. The dependent variable, g_{yt} , is the growth rate of real GDP, ε_{Ft} is foreign exchange shock (residual from the estimated AR model), g_{Kt} is the growth rate of the capital stock (measured as gross fixed capital formation) and g_{Lt} is population growth rate, as a proxy for the growth of the labour force. The ARDL equation above suggests that the growth rate of GDP depends on a series of lagged values of itself and lagged values for the other independent variables. Moreover, equation 4 represents an ARDL for stationary variables. The issue of the stationarity of each variable is discussed in the next section.

We are particularly interested in the long-run coefficient of each variable. The long-run effects (*LR*) of an ARDL model with stationary variables are expressed as:

$$LR_{\varepsilon_F} = \sum_{i=0}^{m} \beta_i / (1 - \sum_{i=1}^{l} \varphi_i)$$
 (5)

$$LR_{g_P} = \sum_{i=0}^{n} \theta_i / (1 - \sum_{i=1}^{l} \varphi_i)$$
 (6)

$$LR_{g_K} = \sum_{i=0}^k \lambda_i / (1 - \sum_{i=1}^l \varphi_i) \tag{7}$$

Equations 6, 7 and 8 show the long-run effect of foreign exchange shocks, population growth and capital growth, respectively. In the empirical model, the long-term effect exists if we can establish that the calculated F-statistic is greater than the upper bound of the critical value (the bounds test). If the computed F-statistic is below the lower bound of the critical value, the null hypothesis of no long-term relationship cannot be rejected. And if the calculated F-statistic is within the upper and lower bounds, the test is inconclusive. The optimal model will be selected by using the Akaike Information Criteria (AIC) and Schwartz Criteria

(SC).⁷Given the established theories of economic growth we expect the foreign exchange shock and growth of physical capital to have a positive long-run effect on economic growth, while the effect of population growth on economic growth can be either positive or negative.

Empirical Findings and Analysis

We start by estimating the general model and testing each variable for stationarity using the Augmented Dickey Fuller test. All the variables were I (0) with the exception of the population growth variable for a few countries which was I (1). The Phillips-Perron and the Kwiatkowski-Phillips-Schmidt-Shin tests are employed to verify the aforementioned results. The detailed results of the ADF tests are presented in appendix B. However, the non-stationary population growth rate does not make conceptual sense. It implies a shock to the population growth moves away permanently from a long-term equilibrium. Since population explosions have not been reported by any of economies under study, we treat the population growth as a stationary variable. The ARDL Bound Testing Approach to cointegration is then implemented only for robustness to examine the long-run relationship among the variables for the ten countries. Given the stationary nature of each variable it is not necessary to test for cointegration, but we do so as an added robustness check. This implies a model such as equation 4 can be estimated. An appropriate lag order is required for the bounds testing approach to be applied. The lag length that minimizes the AIC was selected.

We estimated the ARDL F-statistic to examine whether cointegration exists among the variables for each country. The results confirmed that cointegration exists among the variables for each country. For most countries, the results are significant at the 1% and 2.5 % levels, except the Bahamas which was significant at the 10% level. The results and critical values are presented in the Tables 1 and 2.

Table 1: Bounds Testing Results

Country	F- Statistic	
Bahamas	4.053****	
Barbados	7.196*	
Belize	7.696*	
Fiji	24.786*	
Grenada	7.541*	
Guyana	19.836*	
Jamaica	8.977*	
Mauritius	7.089*	
St. Lucia	5.565**	
Trinidad & Tob	ago 5.575**	

Note: *, **, *** and **** denote significant

Table 2: Test Critical Values Bounds

Significance	I (0) Bound	I (1) Bound
10%	2.72	3.77
5%	3.23	4.35
2.50% 1%	3.69 4.29	4.89 5.61

Table 3 presents the long-run ARDL model in which GDP growth is the dependent variable and capital growth, population growth and foreign exchange shock are independent variables. These estimates come from first estimating a short-term model as given by equation 4 – from which the long-term coefficients are calculated. The best lag length is obtained by the AIC method. Table 3 presents the chosen short-run model from which the long-term coefficients are calculated. Our primary interest is in the long-run coefficient for the foreign exchange shock variable and its effect on economic growth. The long-run coefficients can be inconsistent in the presence of serial correlation. We therefore employed the Lagrange multiplier (LM) test to examine whether serial correlation exists. No evidence of serial correlation was found among the variables for each country. The results are presented in the Appendix C.

Table 3: Long Run Coefficients: Dependent Variable: GDP Growth Rate

	Foreign	Growth of	Growth of	Selected Model	Time
Country	exchange shock	capital stock	population	short-run model	Period
Bahamas	3.489, (1.589)	0.298, (3.660)*	2.465, (1.784)***	ARDL(4, 0, 2, 0)	1970 - 2014
Barbados	5.775, (1.527)	0.116, (7.050)*	-10.095, (-1.133)	ARDL(1, 2, 0, 1)	1970 - 2014
Belize	15.534, (12.646)*	0.114, (6.970)*	3.558, (2.775)*	ARDL(1, 4, 0, 2)	1976 - 2014
Fiji	14.530, (4.918)*	0.019, (0.798)	-0.708, (-1.170)	ARDL(1, 4, 0, 0)	1970 - 2014
Grenada	0.620, (0.226)	0.159, (4.230)*	1.789, (1.510)	ARDL(2, 2, 2, 4)	1977 - 2015
Guyana	6.586, (1.999)**	0.121, (5.602)*	-1.318, (-1.548)	ARDL(1, 3, 1, 3)	1970 - 2014
Jamaica	-2.565, (2.261)**	0.211, (6.044)*	-1.953, (-1.797)***	ARDL(2, 0, 0, 0)	1970 - 2014
Mauritius	0.692, (0.653)	0.089, (2.848)*	0.480, (0.453)	ARDL(2, 2, 2, 0)	1970 - 2014
St. Lucia	8.383, (1.391)	0.298, (6.917)*	10.245, (8.053)*	ARDL(4, 4, 4, 4)	1980 - 2014
Trinidad & Tobago	6.770, (2.658)*	0.068, (0.978)	-4.295, (-4.656)*	ARDL(1, 0, 4, 3)	1970 - 2014

Note: *, ** and *** denote significant at 1%, 5% and 10% levels respectively. () - t-stats

The results indicate that with the exception of Jamaica, foreign exchange shocks affected economic growth. This result is generally in tandem with our hypothesized expectation, which was mentioned previously. The coefficients for Belize, Fiji, Guyana, Jamaica and Trinidad and Tobago were statistically significant, while the others are not. With the exception of Jamaica, all other long-run FX shock coefficients were economically meaningful, in that the coefficients are consistent with the theoretical framework.

The coefficients for the capital growth (K) variable have the correct signs as hypothesized. All of the coefficients are statistically significant with the exception of that for Fiji and Trinidad and Tobago. Nevertheless, all of the coefficients possess the right sign. Intuitively, growth of the capital stock positively influences economic growth. The results are somewhat mixed for the effect of population growth on economic growth. The results for five countries indicate that population growth negatively affects growth while the results for the other five suggested

otherwise. This may reflect different degree of success in mobilizing human capital.

Conclusion and Policy Implications

This research presented a theoretical model connecting shocks to the domestic foreign exchange market and economic growth. The research utilizes time-series ARDL models to estimate the effect of FX shocks on economic growth for the following small very open economies: The Bahamas, Barbados, Guyana, Jamaica, St. Lucia, Belize, Mauritius, Grenada, Fiji and Trinidad and Tobago. Our findings add a new dimension to the literature on foreign exchange and economic growth. The analysis is motivated by a theoretical model showing how the level of foreign exchange in the system shift when the market's expectation of the exchange rate is misaligned with the monetary authority's target rate of exchange. The individual time-series models also help to determine the dynamic structure of each economy.

The empirical test results show that favourable shocks on foreign exchange have permanent positive effects on economic growth in nine of the ten small very open economies examined, with the only exception being Jamaica. The results also indicate that favourable growth in the capital stock has permanent positive effects on economic growth. The effect of population growth on economic growth, on the other hand, is country specific.

With respect to foreign exchange, the policy implication is clear for economies with an exchange rate target and a currency that is not convertible in the global arena. Policy has to operate mainly on the demand for foreign exchange since the supply is largely controlled by global events and severe weather occurrences that disrupt export capacity. A policy that shifts outward the demand for foreign currency – everything else remaining constant – which causes the market to expect devaluation will result in a decline of the stock of foreign currency available to the economy. This is the case of a self-induced negative foreign exchange shock that our empirical results indicate is likely to have a negative effect on economic growth. Such a situation could occur from excessive government current expenditure – such as large civil service salary increases – by government. Most times, however, there is an increase in the

demand for foreign exchange because of an increase in the price of a key import such as oil. The negative shock is therefore imposed exogenously on the economy [14-30].

In addition, a policy that shifts inward the demand for foreign exchange – ceteris paribus – would cause the market to view the exchange rate hard peg or general target more credibly. One policy that accounts for such a positive FX shock would be a comprehensive renewable energy strategy that reduces the demand for fuel. Caribbean and island-based economies have substantial scope for implementing renewable energy growth strategies.

References

- 1. Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. *Journal of Applied Econometrics*, *16*, 289–326.
- 2. Bacha, E. (1990). A three-gap model of foreign transfers and the GDP growth rate of developing countries. *Journal of Development Economics*, *32*, 279-296.
- 3. Taylor, L. (1993). A three-gap analysis of foreign resource inflows and developing country growth. (L. Taylor, Ed.) *Cambridge, MA: MIT Press*.
- 4. Sepehri, A., Moshiri, S., & Doudongee, M. (2000). The foreign exchange constraints to economic adjustment: the case of Iran. *International Review of Applied Economics*, *14*(2), 235-251.
- 5. Lensink, R. (1995). Foreign exchange constraints and developing countries. *Economic Modelling*, *12*(2), 179-191.
- 6. Polterovich, V., & Popov, V. (2003). Accumulation of Foreign Exchange Reserves and Long Run Growth. *New Economic School Working Paper*.
- 7. Worrell, D., Lowe, S., & Naitram, S. (2012). Growth Forecasts for Foreign Exchange Constrained Economies. Central Bank Barbados Working Paper.
- 8. Thirlwall, A. P. (2013). Economic Growth in an Open Developing Economy: The Role of Structure and Demand. *Cheltenham, UK and Northampton, MA, USA: Edward Elgar*.
- 9. Moore, W., & Glean, A. (2015). Foreign exchange reserve adequacy and exogenous shocks. Applied Economics, 490 501.

- 10. Barro, R. J., & Sala-i-Martin, X. (2004). *Economic Growth (Second Edition)*. Massachusetts: MIT Press.
- 11. Bhaskara Rao, B. (2010). Time-series econometrics of growth-models: a guide for applied economists. *Applied Economics*, 73 86.
- 12. Barro, R. J. (1991). Economic growth in a cross section of countries. *Quarterly Journal of Economics*, 407–433.
- 13. Barro, R. J. (1999). Determinants of Economic Growth. *The MIT Press*.
- 14. Banerjee, A., Dolado, J., Galbraith, J., & Hendry, D. (1993). Co-integration, Error Correction, and the Econometric Analysis of Non-stationary Data. *Oxford University Press*.
- 15. Charemza, W., & Deadman, D. (1992). New Directions in Econometric Practice: General to Specific Modelling, Cointegration and Vector Autoregression. Aldershot, Edward Elgar.
- 16. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. *Journal of the American Statistical Association*, *74*, 427–431.
- 17. Fuller, W. (1976). Introduction to statistical time series. New York, Wiley.
- 18. Grossman, G., & Helpman, E. (1991a). Innovation and Growth in the Global Economy. *MIT Press*.
- 19. Johansen, S. (1991). Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models. *Econometrica*, *59*, 1551-1580.
- 20. Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press.
- 21. Johansen, S., & Juselius, K. (1990). Maximum Likelihood Estimation and Inference on Cointegration- with Applications to the Demand for Money. *Oxford Bulletin of Economics and Statistics*, *52*, 169-210.
- 22. Jones, C. I. (1995a). Time-series tests of endogenous growth models. *Quarterly Journal of Economics*, *110*, 495-525.
- 23. Jones, C. I. (1995b). R&D-based models of economic growth. Journal of Political

- Economy (103), 759-784.
- 24. Lucas Jr., R. E. (1988). On the mechanics of economic development. *Journal of Monetary Economics*, *22*, 3-42.
- 25. Mankiw, N. G., Romer, D., & Weil, D. N. (1992). A contribution to the empirics of economic growth. *Quarterly Journal of Economics* (107), 407–438.
- 26. Pesaran, M., & Pesaran, B. (1997). Working with Microfit 4.0: Interactive Econometric. *Oxford University Press*.
- 27. Pesaran, M., & Shin, Y. (1999). An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis. (S. Strom, A. Holly, & P. Diamond, Eds.) *Cambridge University Press*.
- 28. Pesaran, M., & Smith, R. (1998). Structural Analysis of Cointegrating VARs. *Journal of, 12*, 471-505.
- 29. Romer, P. M. (1986). Increasing returns and long-run growth. *Journal of Political Economy*, 1002-1037.
- 30. Romer, P. M. (1990). Endogenous technological change. *Journal of Political Economy, 98*, 8071-8103.

FootNote:

- ¹ Equation 1 implies interesting dynamic adjustments as the level of foreign exchange adjusts towards equilibrium. This is the work of future research.
- ² For early discussions on the ARDL modelling approach see Charemza and Deadman (1992). This approach, which is now widely used in empirical studies, has been popularized by Pesaran and Pesaran (1997), Pesaran and Smith (1998) and Pesaran and Shin (1999).
- ³ It is required that all variable be of the same order of cointegration for the use of other techniques like Johansen (1991), Johansen (1995) and the Johansen and Juselius (1990). On this account, the ARDL approach is proven to be superior.
- ⁴ Mankiw (1992) also examined the significance of control variables.
- ⁵ The endogenous growth theory postulates that growth is primarily the result endogenous forces. Policies that promote competition, openness and change in innovation will promote growth. See Jones (1995a) and Jones (1995b), Romer (1986), Romer (1990), Lucas (1988), Grossman and Helpman (1991a) for the various strands of the theory for which the SR may depend.
- ⁶ Labour market data is non-existent, thus requiring this proxy.
- ⁷ The best model will furnish the lowest the AIC and SC values.
- ⁸ See Dickey and Fuller (1979) and Fuller (1976)

⁹ The result for Jamaica raises the question of whether the constrained stock of foreign exchange is utilized in growth-promoting activities. If the stock of foreign currency is utilized in growth-promoting activities, there should be a positive relationship between a positive foreign exchange shock and economic growth. It is worth noting that in Jamaica, it might be the case that positive foreign exchange shocks were associated with IMF programmes. Additionally, an overinvestment, by use of foreign currency, in non-tradable economic activities may be responsible for negative sign our analysis provides.

Appendix A: Sources of Data

- GDP Growth, gross fixed capital formation, and total reserves (inclusive of gold)
 data are from the World Bank's World Development Indicators database.
- Population growth data are from the UNCTAD database.
- Gross Fixed Capital Formation data for Barbados, Jamaica, and the Bahamas are from UNSTAT database.

Appendix B: Augmented Dickey-Fuller Test Results

Country	GDP Growth Rate	Foreign Exchange Shock	Growth Rate of the Capital Stock	Population Growth Rate
Bahamas	(-4.620), 0.0005*	(-5.400), 0.0001*	(-5.402), 0.0000*	(-4.354), 0.0073*
	Level with Intercept	Level with Intercept	Level with Intercept	1st Diff. with Trend & intercept
Barbados	(-3.674), 0.0093*	(-3.420), 0.0157*	(-7.675), 0.0000*	(-3.900), 0.0045*
	Level with Intercept	Level with Intercept	Level with Intercept	Level with Intercept
Belize	(-3.196), 0.0282**	(-4.690), 0.0005*	(-5.019), 0.0002*	(-4.358), 0.0017*
	Level with Intercept	Level with Intercept	Level with Intercept	1st Difference with Intercept
Fiji	(-7.948), 0.0000*	(-7.761), 0.0000*	(-7.278), 0.0000*	(-5.456), 0.0001*
	Level with Intercept	Level with Intercept	Level with Intercept	1st Difference with Intercept
Grenada	(-5.497), 0.0001*	(-2.752), 0.0774**	(-6.511), 0.0000*	(-9.519), 0.0000*
	Level with Intercept	Level with Intercept	Level with Intercept	Level with Intercept
Guyana	(-3.689), 0.0077*	(-6.276), 0.0000*	(-4.948), 0.0002*	(-3.691), 0.0079*
	Level with Intercept	Level with Intercept	Level with Intercept	Level with Intercept

Jamaica	(-5.900), 0.0000*	(-7.342), 0.0000*	(-5.494), 0.0000*	(-4.342), 0.0015*
	Level with Intercept	Level with Intercept	Level with Intercept	1st Difference with Intercept
Mauritius	(-6.095), 0.0000*	(-5.235), 0.0001*	(-2.592), 0.1025***	(-3.541), 0.0481*
	Level with Intercept	Level with Intercept	Level with Intercept	Level with Trend and Intercept
St.Lucia	(-3.609), 0.0112*	(-6.582), 0.0000*	(-4.689), 0.0007*	(-3.673), 0.0414*
	Level with Intercept	Level with Intercept	Level with Intercept	Level with Trend and Intercept
Т&Т	(-2.940), 0.0490 **	(-5.005), 0.0002*	(-7.223), 0.0000*	(-6.177), 0.0001*
	Level with Intercept	Level with Intercept	Level with Intercept	Level with Trend and Intercept

Note: *, ** and *** denote significant at 1%, 5% and 10% levels respectively. ()-t-stats, P-value

Appendix C: Breusch-Godfrey Serial Correlation Test Results

Serial correlation results

Country	F-Statistic	Prob. F-Stat
Bahamas	1.033	0.408
Barbados	0.120	0.974
Belize	0.489	0.743
Fiji	1.590	0.206
Grenada	0.719	0.591
Guyana	1.084	0.386
Jamaica	0.577	0.682
Mauritius	1.851	0.147
St. Lucia	0.260	0.894
Trinidad and Tobago	0.476	0.753

Null of no serial correlation cannot be rejected for any country.