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Abstract

Escalating global energy demand and the environmental consequences of fossil fuel
dependence have intensified the urgent imperative for sustainable renewable energy sources.
Bioethanol derived from lignocellulosic biomass represents a promising and strategic
alternative. This critical, comparative review provides an original synthesis of the valorization
pathways for three high-impact agro-industrial residues—yam peels, cassava peels, and
brewer’s spent grain (BSG)—for advanced bioethanol production, focusing on the interplay
between feedstock composition, rigorous pretreatment, and bioprocess optimization. Crucially,
the analysis establishes an original analytical framework demonstrating that the significant
variability in reported ethanol yields is directly correlated with the inherent heterogeneity in
the proximate and chemical composition of the feedstocks, compounded by disparities in
pretreatment methodologies and saccharification protocols. Pretreatment plays an
indispensable role in overcoming lignocellulosic recalcitrance, thereby enhancing the enzymatic
hydrolyzability of structural polysaccharides. The comparative assessment identifies BSG as
the superior fermentation substrate, exhibiting high carbohydrate and low inhibitory compound
profiles, with documented ethanol yields approaching 94% in optimized processes. Current
research trends mandate the adoption of advanced statistical optimization and kinetic modeling
techniques for enhancing conversion kinetics, reducing operational costs, and improving the
techno-economic feasibility. This waste-to-energy paradigm directly contributes to a circular
bioeconomy by converting low-value waste streams into high-value biofuel, thereby addressing
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challenges in waste management and climate change mitigation. The review concludes by
delineating critical future research trajectories in strain engineering and Al-driven bioprocess
modeling to realize the full, sustainable potential of 2G bioethanol production.

Keywords: Bioethanol, lignocellulosic biomass, circular bioeconomy, pretreatment methods,
fermentation, bioprocess modeling.

Introduction

Energy resources are a cornerstone of global socioeconomic development and are under
increasing scrutiny due to rising demand and environmental pressures. Notwithstanding this
focus, the global energy matrix remains overwhelmingly reliant on fossil fuels. Contemporary
analyses indicate that coal, natural gas, crude oil, and their derivatives collectively account for
approximately 80% of worldwide energy production. Demand for these finite resources
continues to escalate at an annual rate of 1.3%, with a substantial proportion consumed by
household and industrial sectors, notably transportation and agriculture.

This dependency poses two critical global challenges. First, the rapid depletion of global fossil
fuel reserves presents a formidable barrier to long-term energy security. Second, and more
critically, approximately 89% of global greenhouse gas emissions that drive climate change
originate from fossil fuel combustion. This reality has catalyzed intensified scientific and
political efforts to develop economically viable alternative energy sources that mitigate
environmental degradation. In this context, renewable energy sources are widely regarded as
promising solutions, offering multifaceted environmental and socioeconomic benefits. Within
the transportation sector—a domain requiring high-energy-density fuels—biofuels emerge as
a particularly viable renewable alternative. Although other renewables such as solar, wind, and
hydroelectric power generate electricity, they are presently outperformed by liquid fuels in
terms of specific energy density and compatibility with incumbent transportation infrastructure.
A key advantage of biofuels is their markedly reduced lifecycle environmental footprint;
emissions are substantially lower than those from fossil fuels due to their biodegradable
composition and efficient combustion.

The biofuel industry has demonstrated sustained expansion. According to the World Bioenergy
Association, global biogas output has increased at an average annual rate of roughly 9% over
the past two decades, while liquid biofuel production has grown at 12% per annum. By 2019,
global production attained 62.3 billion cubic meters of biogas and 159 billion liters of liquid
biofuels, possessing energy contents of approximately 23 MJ/m3 and 21.1 MJ/I, respectively.
Ethanol dominates the liquid biofuel market, constituting over 80% of global production and
thereby establishing itself as the preeminent biofuel worldwide. Projections for 2024 estimate
global bioethanol production will surpass 135 billion liters, with the United States (42%) and
Brazil (31%) serving as the principal producers.

To sustain this trajectory without competing with food supplies, the research focus has shifted
toward second-generation feedstocks. Agricultural residues such as cassava peel, yam peel,
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brewer's spent grain, along with municipal solid waste (MSW), wood processing by-products,
and dedicated energy crops, represent the most promising and abundant lignocellulosic
biomass sources for advanced bioethanol production. Population growth has precipitated a
substantial increase in the generation of such agricultural waste. These feedstocks are
inexpensive, widely accessible, and non-edible, rendering them ideal substrates for sustainable
bioethanol synthesis and integrated waste valorization strategies. This lignocellulosic biomass
presents considerable potential as a sustainable alternative to first-generation biofuels. Within
a circular biorefinery paradigm, it can be utilized not only for the cost-effective production of
biofuels but also for the co-generation of a suite of value-added products, including
biopolymers, biochar, organic acids, and enzymes, without imposing environmental burdens
or compromising food security.

However, the efficient conversion of this biomass is constrained by its inherent structural
complexity. Lignocellulosic feedstocks are primarily composed of structural polysaccharides—
38-50% cellulose and 23-32% hemicellulose—intricately cross-linked by 10-25% lignin, a
recalcitrant aromatic polymer, alongside minor fractions of minerals and organic extracts. The
distribution and ratio of these constituents are species-dependent. This natural recalcitrance,
wherein lignin forms a protective barrier that limits access to the fermentable sugar polymers,
presents a formidable challenge for industrial-scale deployment. Consequently, a rigorous and
efficient pretreatment process is an indispensable prerequisite to disrupt the lignin-
carbohydrate complex, reduce cellulose crystallinity, and facilitate the subsequent enzymatic
saccharification to release fermentable monosaccharides. This review critically examines recent
advancements in pretreatment technologies and bioconversion processes designed to
overcome these barriers, thereby unlocking the full potential of lignocellulosic waste for a
sustainable and secure energy future.

Agro-Industrial Waste: A Dual Challenge of Abundance and Opportunity

Agricultural production, while fundamental to global food security, also generates immense
volumes of residual biomass, collectively termed agricultural waste. This category
encompasses the non-commodity solid and liquid fractions generated across the agri-food
value chain, including crop residues and livestock effluents . These residues are conventionally
classified into four primary streams: (1) field-based crop residues (e.g., straw, stalks, leaves),
(2) post-harvest fruit and vegetable waste, (3) livestock manure and processing by-products,
and (4) secondary outputs from agro-industrial operations.

The magnitude of this biomass generation is substantial, with global agricultural systems
producing an estimated 998 million tons annually. This volume is projected to increase at a
rate of 5-10% per year, a trend driven by the intensification of farming practices required to
support a growing population and rising living standards. The uncontrolled accumulation of
this waste poses significant environmental threats, contributing to ecosystem degradation and
the deterioration of soil, air, and water quality, with consequent risks to public health.
Paradoxically, this environmental challenge also presents a valuable resource opportunity. A
significant proportion of agricultural waste is lignocellulosic, comprising variable proportions of
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cellulose, hemicellulose, and lignin. This biochemical composition renders it a promising, low-
cost feedstock for biofuel production and other valorization pathways within a circular
bioeconomy framework. However, the inherent structural recalcitrance of lignocellulose,
primarily imparted by the cross-linked lignin matrix, severely limits the enzymatic
hydrolyzability of the constituent polysaccharides.

Consequently, a robust pretreatment step is indispensable for deconstructing the
lignocellulosic matrix and improving the biomass’s amenability to subsequent conversion
processes. A diverse suite of pretreatment methodologies—categorized as physical, chemical,
physicochemical, and biological—has been developed to this end, as extensively documented
in the literature. Each technique presents a distinct profile of advantages and limitations
pertaining to efficiency, economic viability, and environmental impact. Collectively, these
pretreatment strategies provide a foundational technology for the sustainable upgrading of
biomass, thereby transforming a critical waste management issue into a viable resource for
renewable energy and biobased products.

Yam Peels: A Lignocellulosic Feedstock from a Major Crop

Nigeria's status as a global leader in root and tuber crop production is underscored by its
dominance in yam (Dioscorea spp.) cultivation, with an annual output exceeding 50.1 million
tons—constituting approximately 67% of the worldwide supply. The processing and
consumption of this vast agricultural commodity generate substantial quantities of residual
biomass, primarily in the form of yam peels. Rather than representing a simple waste stream,
this residue constitutes a valuable lignocellulosic feedstock with significant potential for
integrated biorefining. Research confirms that yam peels serve as an excellent substrate for
biofuel production, including bioethanol and biogas, due to their favorable biochemical
composition. Their distinct physicochemical properties also make them effective biosorbents
for treating contaminated water, highlighting their potential in both energy and environmental
applications.

The efficacy of yam peels in these valorization pathways is intrinsically linked to their material
composition. The proximate and chemical characteristics summarized in Tables 1 and 2 offer
fundamental insights into their structural and nutritional properties, which directly influence
conversion efficiency and optimal application. The compositional data reveal a substrate rich
in polysaccharide (cellulose and hemicellulose), conducive to fermentation, although values
vary with cultivar and analytical method. This profile substantiates the promise of yam peels
as a renewable and sustainable resource for bioconversion, aligning waste management with
the production of energy and high-value products.
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Table 1. Proximate composition of yam peel reported in the literature.

Nitrogen .
] Crude Crude Ether Volatile
Moisture ] ) Ash Free
Authors Protein Fibre Extract Matter
(%) (%) Extract
(%) (%) (%) (%)
(%)
Kitson-
Hyte
ytey 69.7 NR NR NR NR NR NR
et al.
(2024)
Bashir
et al. 11.11 NR NR NR 5.93 NR 69.7
(2021)
Popoola
et al. 4.66 4.89 12.24 3.34 9.78 69.75 NR
(2021)
Isah et 12.98
2.18 =+ 3.15 + 11.96 1.87 £
al. + NR NR
0.18 0.05 + 0.4 0.36
(2019) 0.78
Ekpo et
al. NR 11.14 6.30 4.12 7.30 71.14 NR
(2019)
Lawal et 41.00 10.00
11.75 + 3.46 + 1.30 £
al. + + NR NR
0.03 0.90 0.20
(2014) 6.90 0.10

NR: Not Reported
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Table 2. Chemical composition of yam peel.

) Ligni . Ash
Referenc Cellulo Hemicellul 0 Extractiv % Carbo Hydrog
es se (%) ose (%) es (%) ° n (%) en (%)
(%) )
Bashir et
27.4
al. 29.02 28.91 3 NR NR NR NR
(2021)
3.19 8.4 39.40
Oladiran 9.67 + | 21.98 =+ i‘ 65.17 = | 9% | | ' 6.12 &
(2014) 0.51 0.51 1.56 0.2 0.02
0.04 3 0.67

Cassava Peels: A Substantial and Widespread Lignocellulosic Residue

The industrial processing of cassava (Manihot esculenta Crantz) yields substantial residual
biomass, with peels constituting a dominant fraction of post-harvest losses and the magnitude
of this waste stream is considerable. In Nigeria—a preeminent global cassava producer—the
annual processing of an estimated 10 million tons of roots for garri production results in the
discard of approximately 2.96 million metric tons (MMT) of peels. More contemporary analyses
suggest this figure may surpass 15 million tons annually. These peel residues, characterized
by a typical thickness of ~1 mm, account for 10—-13% of the root's dry matter composition.

This abundant, fibrous lignocellulosic residue presents a highly promising feedstock for
advanced biorefinery applications, particularly bioethanol synthesis, owing to its favorable
biochemical constitution. Its suitability is principally underpinned by a high starch content,
reported in the range of 56—60%, complemented by significant hemicellulose (15-18%) and
comparatively lower proportions of lignin (2—3%), protein (1.5-2%), pentosan (2%), and
reducing sugars (0.4-5%). Standard proximate characterization further delineates cassava
peels by a dry matter content of 86.5-94.5%, organic matter of 81.9-93.9%, crude protein of
4.1-6.5%, neutral detergent fiber of 34.4%, and lignin of 8.4%. It is critical to note that
reported values for these compositional parameters exhibit notable inter-study variability.
These discrepancies are likely attributable to a confluence of factors, including genotypic
diversity among cassava cultivars, divergent agricultural practices, and heterogeneity in
sample preparation and analytical protocols. The proximate and chemical compositions of
cassava peels reported in the literature are summarized in Tables 3 and 4, respectively.
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Table 3: Proximate composition of cassava peels

Components | Olutosin & | Isah et al. | Idugboe et al. (2017) Ebabhi et al.
(2019); (2018)
Kayode (2021)
and Tonukari
et al. (2023) Cassava peels obtained from
UCP FCP Benin | Okada | Warri | Koko
city
Moisture 86.29 |31.60 |2.18+0.18 |8.500|7.200 |7.967 | 8.000 |14.16+0.056
content (%)
Ash (%) 4.88 10.23 |12.98+0.78 | 7.500 | 8.1 7.517 | 8.000 |2.25+0.026
Protein (%) |6.24 11.22 | 3.15+£0.05 [4.600|5.000 |3.900 |4.100 |5.23+£0.015
Lipid (%) 1.39 2.91 |1.89+0.36 7.20+0.032
(fat) (fat)
Crude fiber|10.88 |8.87 |11.96+0.4 |12.00|11.50 |12.50 |12.7 5.10+0.031
(%)
Cyanide 118.86 | 20.46 | NR NR NR NR NR NR
(ppm)
Starch (%) |[56.72 |20.09 | 67.39£0.15 | NR NR NR NR NR
Keys: UCP- Unfermented cassava peels
FCP- Fermented cassava peels
Table 4: Chemical composition of cassava peels
Parameter Composition
Tonukari et | Widiarto et | Daud et al. | Pooja and Padmaja
al. (2023) al. (2019) | (2014) (2015)
Cellulose NR 40.5% 37.9% 14.17%
Hemicellulose | NR 21.4% 37.0% 23.40%
Lignin NR 11.7% 7.5% 10.88%
Organic 48.7 NR NR NR
carbon
content (%)
Total 1.0 NR NR NR
nitrogen
content (%)
C/N Ratio 48.7 NR NR NR
K (%) 1.1 NR NR NR
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P (%) 1.6 NR NR NR
NO3 (%) 0.16 NR NR NR
Zn (mg/kg) 125 NR NR NR
Cu (mg/kg) 15 NR NR NR
Mn (mg/kg) | 180 NR NR NR
Ph 6.4 NR NR NR
Na (%) 0.15 NR NR NR
Ca (%) 0.9 NR NR NR
Pb (mg/kg) 16.7 NR NR NR
Ash (%) 52.6 NR 4.5 3.7

Brewer's Spent Grain as a Lignocellulosic Biomass

Brewer's spent grain (BSG)— the principal solid by-product of the brewing industry— is
produced during the mashing stage, when malted and adjunct cereals are solubilized in hot
water to extract fermentable sugars, amino acids, and other soluble compounds into the wort.
This process transfers approximately 60—70% of the initial dry mass into the wort, leaving the
insoluble fraction as BSG. Although barley (Hordeum vulgare) is the main cereal used, other
grains— such as wheat and unmalted barley (substitution levels up to 45%)—introduce
significant variability into the final composition of BSG.

Following mashing, the residual solids are recovered via filtration (e.g., in a lauter tun) and
subjected to sparging with hot water (~78°C) to maximize sugar recovery. The resultant BSG
possesses an elevated moisture content, typically ranging from 75% to 85%, and is
subsequently handled as a wet material. Macroscopically, BSG presents as a light to dark
brown, coarse particulate material with a characteristic malty aroma. Its physical structure
comprises the undissolved grain fractions, including the husk, pericarp-seed coat (tegument),
endosperm particles, non-saccharified starch, and protein-polyphenol complexes formed
during mashing. As the most voluminous brewing by-product, BSG accounts for roughly 85%
of the industry's total residues. Production metrics indicate an output of approximately 20 kg
of wet BSG per 100 liters of beer produced, equating to ~270 kg per m3 of beer, derived from
about 30% of the initial malt input.

The high valorization potential of BSG stems from its rich and complex chemical composition,
although this composition shows substantial heterogeneity. Key determinants of this variability
include the barley cultivar and processing (e.g., roasting, kilning), specific malting parameters,
and mashing regimen conditions. Despite this variability, a consistent core nutritional profile
has been documented, as summarized in Table 5.

BSG is distinguished by its high dietary fiber content, predominantly constituted by
hemicellulose (19-42% dry matter, d.m.), with arabinoxylans as the principal component,
cellulose (15-29% d.m.), and lignin (3—28% d.m.) (Lynch et al., 2016; Tisma et al., 2018). It
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also serves as a significant source of protein (14-31% d.m.), along with appreciable quantities
of lipids (3—13%), ash (1-5%), and residual starch (1-12%) (Jackowski et al., 2020; Rojas-

Chamorro et al., 2020).

Table 5. Compositional characterization of brewer's spent grain (BSG) from

various studies.

Consolidated

Mata et Wilkinson Bieniek Pabbathi Ranges (e.g.,
Parameter al. et al. et al. et al. Jackowski et al.,
(2015) (2017) (2022) (2022) 2020; Lynch et
al., 2016)
Particle size 0.149-
NR NR NR NR
(mm) 1.190
Moisture (%) 72.0 NR NR NR 75-85 (wet basis)
2.7
Ash (% d.m.) 4.4 NR 1-4 1-5
0.21
Higher Heating
19.8 NR NR NR NR
Value (MJ/kg)
Lipid (% d.m.) 5.4 6.3+ 1.4 NR 2.5-6 3-13
Cellulose (% 22.1
6.09 17.18 2660 15-29
d.m.) 0.8
Hemicellulose 193 £
39.7 34.16 19-60 19-42
(% d.m.) 1.8
Lignin (% 10.7 £
34.8 3.12 13-56 3-28
d.m.) 2.2
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Consolidated
Mata et Wilkinson Bieniek Pabbathi Ranges (e.g.,

Parameter al. et al. et al. et al. Jackowski et al.,
(2015) (2017) (2022) (2022) 2020; Lynch et
al., 2016)

Total Organic

Carbon (% 97.9 NR NR NR NR
d.m.)
Starch (% 1.2 £

NR NR NR 1-12
d.m.) 0.11
Protein (% 279 £

NR NR NR 14-31
d.m.) 0.18

Extractives (%
d.m.)

NR 8.6 45.54 NR NR

NR: Not Reported; d.m.: dry matter

This nutrient-dense and lignocellulose-rich profile establishes BSG as a highly attractive, low-
cost substrate for bioprocessing. It is extensively employed in both solid-state (SSF) and
submerged fermentation (SmF) as a nutrient source for microbial cultivation, enabling the
synthesis of a diverse portfolio of value-added products. These include enzymes, organic acids,
biofuels, and prebiotic compounds. The integration of BSG into such biorefinery concepts
epitomizes the implementation of circular economy principles, effectively upgrading an
industrial waste stream into a renewable resource for biochemical production.

Enzymatic Conversion of Agro-Waste Starch to Glucose

The efficient conversion of starch derived from agricultural waste into fermentable sugars is a
critical step in the bioethanol production pipeline. This process is predominantly achieved
through enzymatic hydrolysis, a method favored for its high specificity and yield. The hydrolysis
occurs in two main stages: liquefaction, which reduces the viscosity of gelatinized starch, and
saccharification, where the resulting dextrins are broken down into glucose. The
saccharification process employs a synergistic cocktail of hydrolytic enzymes to target the
specific glycosidic bonds within the starch polymer. a-amylase (endo-amylase; EC 3.2.1.1) acts
internally on a-1,4 linkages to rapidly reduce polymer length. B-amylase (exo-amylase; EC
Res Next Gen Mater Eng
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3.2.1.2) then cleaves maltose units from the non-reducing ends of the chains.
Finally, glucoamy/ase (amyloglucosidase; EC 3.2.1.3) acts on both a-1,4 and, at a slower rate,
a-1,6 linkages to release B-D-glucose monomers.

A key strategy to enhance the efficiency of this process is the supplementation with
a debranching enzyme, such as pullulanase (EC 3.2.1.41). Pullulanase specifically hydrolyzes
the a-1,6 glycosidic bonds at the branch points in amylopectin. Its co-application with
glucoamylase is particularly effective due to their shared optimal pH and temperature ranges,
leading to a more complete and rapid conversion of starch to glucose. While chemical
hydrolysis using agents like sulfuric acid is a possible alternative, the enzymatic method is
strongly preferred at an industrial scale. The primary advantages include superior glucose
yields, the avoidance of equipment corrosion, and, most significantly, the prevention of
undesirable and inhibitory by-product formation (e.g., furans and organic acids) that can
impede subsequent fermentation. The resulting high-purity glucose stream is an ideal
substrate for microbial fermentation, primarily by Saccharomyces cerevisiae, for bioethanol
production. Furthermore, this glucose syrup can be diverted to other high-value bioconversion
processes, such as the enzymatic production of high-fructose syrup, underscoring the
versatility of enzymatically hydrolyzed agro-waste within an integrated biorefinery model.

Microbial Fermentation for Bioethanol Production

Fermentation constitutes the central phase of the bioethanol production process, where
fermentable sugars obtained from hydrolysis are biologically converted into ethanol and carbon
dioxide by suitable microorganisms. This biochemical transformation is catalyzed by a suite of
microbial enzymes, facilitating the catabolism of C5 and C6 sugars into the target biofuel.

Microbial Biocatalysts and Industrial Selection

A diverse consortium of microorganisms is employed as biocatalysts for this purpose, spanning
fungal species such as Saccharomyces cerevisiae and Aspergillus niger, to facultative bacteria
including Zymomonas mobilis . These strains demonstrate efficacy in fermenting sugars
derived from a wide spectrum of agricultural residues, including cassava, yam, and potato
peels, as well as brewer's spent grain. For industrial-scale applications, the
yeast Saccharomyces cerevisiae and the fungus Aspergillus niger are particularly favored. This
preference is predicated on their robust tolerance to inhibitory compounds, high ethanol
volumetric productivity, and broad substrate specificity, which enables the concurrent
fermentation of both pentose and hexose sugars. A comparative overview of key microbial
strains is provided in Table 6.
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Table 6: Characteristics of Prominent Ethanologenic Microorganisms

_ _ Primary Industrial
Microorganism Type Key Advantages
Substrates Relevance
High ethanol yield,
robust inhibitor
Saccharomyces Glucose, High; Industry
o Yeast tolerance, well-
cerevisiae ) Sucrose standard
established
genetics
Broad substrate Moderate-High;
specificity, high Pentoses, Often used in
\Aspergillus niger Fungus P ty J
hydrolytic enzyme Hexoses co-cultures or
production SSF
High specific
gh s Moderate;
uptake rate, low Glucose, )
Zymomonas . . . Subject of
o Bacterium biomass yield, Sucrose, .
mobilis . metabolic
high ethanol Fructose ) ]
engineering
tolerance

Critical Process Parameters and Kinetic Optimization

The ultimate ethanol yield and volumetric productivity are critically dependent on a tightly
controlled suite of physicochemical parameters. Key variables include medium pH,
fermentation temperature, substrate concentration, process duration, and inoculum size.
Among these, temperature exerts a particularly profound influence on fermentation kinetics,
as it governs fundamental physiological processes including microbial growth rate, cellular
membrane fluidity, and enzymatic activity. While reaction rates typically increase with
temperature up to a species-specific optimum, supra-optimal temperatures—those exceeding
35°C for S. cerevisiae—elicit severe detrimental effects. Such thermal stress can compromise
membrane integrity, induce protein denaturation, and trigger a metabolically costly heat-shock
response. Furthermore, the inherent toxicity of accumulated ethanol is synergistically amplified
at elevated temperatures, leading to exacerbated inhibition of microbial growth and metabolic
activity.
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Concurrently, nitrogen availability serves as a critical regulator of yeast proliferation and directs
metabolic flux towards biosynthesis. The strategic supplementation with complex nitrogen
sources, such as yeast extract, is a well-established methodology to enhance microbial vitality
and maximize final ethanol titers.

Advanced Fermentation Strategies and Future Outlook

The systematic optimization of these parameters is therefore indispensable for maximizing the
economic feasibility of bioethanol production, irrespective of whether monoculture or co-
culture systems are employed. A principal challenge in industrial fermentation involves
transcending the physiological limitations of conventional microbial strains. A promising avenue
for enhancing process robustness and overall yield lies in the deployment of engineered or
adaptively evolved strains exhibiting superior tolerance to both high ethanol titers and elevated
temperatures (thermotolerance). The implementation of such specialized ethanologenic
variants presents a strategic solution to mitigate end-product and thermal inhibition, thereby
enabling more efficient, resilient, and productive industrial-scale fermentations.

Bioprocess Modelling and Kinetic Analysis for System Optimization

The development of economically viable bioprocesses is fundamentally contingent upon the
systematic optimization of operational parameters, which exert a deterministic influence on
overall system efficiency, productivity, and techno-economic feasibility. This optimization
paradigm is critical for enhancing the cost-to-profit ratio and de-risking the scale-up of
production to an industrial level. The performance and final product yield are governed by a
complex interplay of factors, including fermentation conditions (pH, temperature), microbial
strain physiology, substrate characteristics, and bioreactor configuration.

Advanced Frameworks for Bioprocess Optimization

The limitations of traditional one-variable-at-a-time (OVAT) approaches, which fail to account
for variable interactions, have necessitated the adoption of sophisticated statistical and
computational frameworks. Techniques such as Response Surface Methodology (RSM),
Artificial Neural Networks (ANN), and Genetic Algorithms (GA) provide superior robustness for
navigating high-dimensional, multi-factorial design spaces, enabling the identification of global
optima. The efficacy of these tools is predicated on statistically designed experiments.
Foundational designs, including Plackett-Burman for efficient variable screening, and Box-
Behnken or Central Composite Design (CCD) for detailed response surface analysis, are
instrumental. These methodologies allow for the precise elucidation of significant variables,
determination of their optimal setpoints, and modeling of their synergistic effects, thereby
culminating in maximized product yields.

Mechanistic Kinetic Modelling of Bioconversion Stages:
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Complementing empirical optimization, kinetic modelling provides a powerful mechanistic
framework for simulating and predicting the dynamics of critical bioprocess stages, including
pretreatment, enzymatic hydrolysis, and fermentation.

A diverse suite of kinetic models is employed to describe microbial growth and product
formation. Prominent examples include:

The Monod model for substrate-dependent growth kinetics.

The Logistic model for population dynamics under limiting conditions.

The Modified Gompertz model, extensively applied to estimate critical fermentation parameters
such as lag phase duration (A), maximum product formation rate (Rm), and potential product
concentration (Pmax). Additional models, including Contois (for substrate
inhibition), Luedeking—Piret (for growth- and non-growth-associated product formation),
and Teisser, are frequently applied to capture specific microbial behaviors.

For the enzymatic hydrolysis of lignocellulosic biomass, kinetics are often described
by Michaelis—Menten formalism, Langmuir adsorption isotherms, and pseudo-first-order rate
equations. To address the inherent complexities of heterogeneous solid-liquid reactions, more
intricate models such as the Kopelman model for fractal systems and deactivation—reactivation
mechanisms are employed to account for enzyme inactivation and complex substrate
interactions.

Synthesis and Modelling Imperative

A fundamental challenge in bioprocess kinetics is the absence of a universal model capable of
fully capturing the heterogeneity of lignocellulosic biomass. The coexistence of multiple
substrates, inhibitory compounds, and complex enzyme-substrate interactions creates a
system with potentially concurrent rate-limiting steps. Therefore, the critical endeavor involves
a judicious, multi-stage approach: identifying dominant influential factors through statistical
screening, pinpointing the rate-determining step, and carefully selecting or formulating the
most appropriate mechanistic model. Tailoring the kinetic modelling approach to specific
bioprocess conditions is indispensable for achieving predictive accuracy, enabling robust
process control, and ultimately realizing cost-effective optimization for industrial-scale
production (Table 7).

Table 7: Summary of Prominent Kinetic Models in Lignocellulosic Bioprocessing

Model Representative Primary Application Key
Category Models Y APP Parameters
Microbial Monod, Logistic, . .

Growth Contois Fermentation kinetics Mmax, Ks, Xmax
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Model Representative Primary Application Key
Category Models Y APP Parameters
Product Modified Gompertz, : .
Formation Luedeking-Piret Bioethanol production Pmax, Rm, A, @, B
Enzymatic Michaelis-Menten, .
Hydrolysis Langmuir Adsorption Cellulose/Saccharification Vimax, Km, Kads
Complex Kopelrnar!, Heterogeneous biomass F_ractal .
Svstems Deactivation- hvdrolvsis dimension,

y Reactivation ydroly k_deact

Bioethanol: A Strategic Renewable Fuel and the Modelling Imperative

Bioethanol (EtOH), a clear, colorless, and biodegradable straight-chain alcohol, is synthesized
via the microbial fermentation of sugars derived from lignocellulosic and starch-based biomass.
As a renewable liquid fuel, it confers significant advantages within the transportation sector,
including a superior octane rating, high latent heat of vaporization, and reduced automotive
emissions. These attributes collectively enhance thermodynamic efficiency and operational
performance in spark-ignition engines, positioning bioethanol as a pivotal gasoline additive or
blending component for the displacement of fossil fuels.

Notwithstanding the well-established technical feasibility of its production from diverse
feedstocks, including abundant agricultural residues, the economic viability and net yield of
bioethanol are contingent upon a complex matrix of interdependent process parameters. This
intricacy renders the accurate modeling and optimization of these bioconversion processes a
critical scientific and engineering challenge, central to the realization of commercial-scale
production. While empirical data are fundamental, they possess an inherent limitation in
extrapolative predictive capacity across the entire operational domain. Consequently, the
development and implementation of sophisticated predictive modeling frameworks are
imperative.

Artificial intelligence (AI) paradigms encompassing artificial neural networks (ANNs), fuzzy
logic systems, and machine learning (ML) algorithms offer a powerful methodological arsenal
for elucidating the complex, non-linear dynamics inherent to bioprocess systems. However,
the deployment of these data-driven modeling techniques within the bioenergy sector remains
nascent and insufficiently exploited. This disparity underscores a critical research imperative:
the formulation and integration of advanced mathematical, statistical, and computational
models is indispensable for the robust estimation, sensitivity analysis, and optimization of
critical process variables. The strategic application of such models is fundamental to the
conceptualization and design of next-generation bioethanol production platforms characterized
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by enhanced robustness, operational efficiency, and economic competitiveness. The
performance of bioethanol production is highly sensitive to feedstock composition and the
selected processing pathway. The variability in final ethanol yield attributable to these factors
is exemplified in Table 8, which provides a comparative synopsis of documented yields from
three distinct lignocellulosic residues—cassava peel, brewer's spent grain (BSG), and yam
peel—under a range of pretreatment and fermentation conditions. The data depicts the
significant influence of hydrolysis method (e.g., acid vs. enzymatic), process severity, and
microbial biocatalyst on the efficiency of sugar conversion to ethanol

Table 8: Comparative analysis of bioethanol yields from prominent agricultural

residues
Biomass Pretreatment Key Process Fermentation process | Bioethanol Reference
Method conditions Yield
Cassava peel | Acid hydrolysis 200g of cassava | S. cerevisiae | 200 L/ton of Odongo et al.
peels powder to 1000 | (period:18 hrs, (2024)

ml of 0.5 M sulfuric
acid, 22 h, 98°C

temperature:
pH: 4.5)

40°C,

cassava peels

pH: 5.0, time: 4 days

concentration up to
5.50% (w/v)

Cassava Acid hydrolysis 13.1M  H:S04 at | S. cerevisiae (72 h) 17.3% Sokan-Adeaga
peels 100°C for 110 min et al. (2024)
BSG Acid hydrolysis sulfuric: 0.065- | Commercial strain | 82% Lisci et al
0.37M; Nitric: 0.01- | of Saccharomyces (2024)
0.5M; acid | cerevisiae (De Danske
concentration, liquid- | Gaerfabrikker A/S,
solid ratio (8- | Malteserkors)(30°C,
12w/w%) 150 rpm, pH: 5.5)
Cassava peel | Dilute acid | Laboratory Saccharomyces 12% Mweta et al.
hydrolysis experiment condition | cerevisiae (baker’s (2024)
(50 mL of 0.1M; | yeast) (70°C, period of
Different 2days)
temperature range-
25 to 70°C); 45%
reducing sugar
Field experiment | Saccharomyces 7.5%
conditions (30 L of | cerevisiae (baker’s
0.1M battery acid ina | yeast) 45% reducing
solar still) sugar (70°C, period of
2days)
BSG Enzymatic 48.6°C, 6.7 % w/w | NR NR Sibono et al.
hydrolysis biomass loading, and (2023)
0.22 mLgDM-1 as
enzyme
concentration,
Glucose yield: 44%
Yam peels Enzymatic 150rpm, Instant dry yeast (S. | 45.79% Saulawa et al.
hydrolysis temperature: 50°C, | cerevisiae); Yeast (2023)
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Cassava Peel

Acid hydrolysis

20% H»S04, 65°C,
pH was adjusted to
4.5 with 0.1M NaOH

Baker’s yeast: 5%; 3-
5 days

33.74g/cm3

Madukasi
(2023)

BSG Dilute acid | 15 w/w solid load, | SESF process 251 L | Wagner et al.

hydrolysis 0.3 L mini reactors EtOH/ton BSG | (2022)
fitted with a peg-
mixer

Yam peel Acid hydrolysis Temperature: 110°C, | S. cerevisiae (5 days, | 180 Ml Bashir et al.

time:180 minutes, | 20g of yeast) (2022)
acid concentration:
1M of HCI, 30g peel
sample

Cassava Enzymatic S. cerevisiae 28.8 g/100 g | Acheampong et

peels hydrolysis reducing al. (2022)

sugar

Cassava Combination of | 38.33+2.03 ml

peels Aspergillus oryzae and

Neurospora crassa Bassey et al.

Pineapple Combination of | 48.67+5.7 ml | (2022)

peels Acid hydrolysis Aspergillus oryzae and

Saccharomyces
cerevisiae

Cassava peel | Pretreatment by | Temperature: 72°C, | S. cerevisiae 45ml Adegbehingbe
pasteurization in | time: 30 minutes Z. mobilis 23ml & Adeleke
a hot water bath (2021)

Cassava peel | Alkaline-assisted | 72h, 150rpm Kluyveromyces 0.444g/g Papathoti et al.
hydrothermal marxianus MTCC (2021)
pretreatment 4139, fermentation

media (110°C, 15min,
10%v/v)

Cassava peel | Acid hydrolysis S. cerevisiae 27.72% Mardina et al.
using empty (2021)
sulfonated palm
oil fruit bunches

BSG Acid and | Acid hydrolysis | Saccharomyces 72% Bedo et al
enzymatic (90°C,1.85w/w% cerevisiae (at 30°C, (2021)
hydrolysis steps | sulphuric acid, | 150rpm shaking for

19.5min) 72h)
Enzymatic hydrolysis
(15w/w% solid
loading, 0.04g/g
enzyme dosage)

Cassava peel | Enzymatic 2.5hrs, 1mg/L | Simultaneous 1.911% Osemwengie et
hydrolysis enzyme loading, | saccharification & al. (2020)

incubation time: 3 | fementation (SSF) by
days S. cerevisiae

BSG Dilute 15w/v% solid | S. cerevisiae 2221 Rojas-
phosphoric and | loading, 72h, EtOH/ton  of | Chamorro et al.
sulphuric 150rpm, pH: 4.8 the BSG (2020)
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acid; Enzymatic

cassava peel

hydrolysis
Cassava peel | Acid and | 250ml  of dilute | S. cerevisiae 180g/L Baki et al
enzymatic H2S04, 7days Z. mobilis 175g/L (2020)
hydrolysis
Cassava pulp | Acid hydrolysis Saccharomyces 6.2% Heriyanti et al.
and peel cerevisiae (2020)
Cassava peel | Acid hydrolysis 0.1 N HCl, Ratio | S. cerevisiae (product | 9.472% Mutiara et al.
and used volume of solution | code: Fermipan): (2020)
newspaper (mL) Cassava peel | Amount of yeast:10g,
waste:used 10 days)
newspaper of 50:50
BSG Autohydrolysis ethanol Hybrid saccharification | 94.0% Pinheiro et al.
concentration: 42.27 | and fermentation of S. (2019)
g/L, glucose | cerevisiae
concentration:
0.23g/L
Cassava and | Acid hydrolysis 150 mL of 4.5M | Two different strains | 60.52% and | Olayemi et al.
yam peels H2S04, 2:1 of | of S. cerevisiae (5% | 13.39% at | (2019)
cassava to yam peels | baker's yeast & freshly | room
isolated enzymes, | temperature,
respectively), 5 days respectively
Cassava peel | Acid hydrolysis 10% concentrated | Aspergillus niger and | 37.35g/mL Mustafa et al.
H2S04, pH: 4.55, | Saccharomyces (2019)
Sugar content: | cerevesiae at 28°C for
15.5% 4 days
Cassava peel | Acid hydrolysis Ultrasonic  assisted | S. cerevisiae 20.77% Sirajuddin et al.
using HCI (2019)
Cassava peel 16%
(409)
Acid hydrolysis 5% H2S04 S. cerevisiae Isah et al
(2019)
Sugar 9.03%
bagasse
(40g)
Hybrid Microbial S. cerevisiae (yeast | The highest | Efeovbokhan et
cassava pulp | (enzymatic) and isolated from palm | ethanol yields | al. (2019)
and peel acid hydrolysis wine) were 54.8%
and 33%
respectively,
from a heated
pretreated
variety &
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(30°C, 75 rpm, 72 h
period)

marxianus,
respectively

Bitter  yam Aspergillus tamari and | 13%
peel S. cerevisiae
[substrate
concentration:  20%,
temperature: 35°C,
agitation: 100rev/min,
pH: 7.0]
Water yam Aspergillus tamari and | 11%
peel . S. cerevisiae .
Enzymat_lc [substrate Banjo et al
hydrolysis concentration: 20%, (2019)
temperature: 35°C,
agitation: 100 rpm,
pH: 5]
Cassava peel | Acid hydrolysis 250 mL of 0.5M | S. cerevisiae (7 days) | 118 mL Femi et al
dilute H2S04, 100°C, (2018)
2h
Cassava peel | Acid hydrolysis 100 mL of 1% | S. cerevisiae (8 days, | 1.63% Hermansyah et
sulfuric acid diluted pH: 5, 150 rpm) al. (2018)
Yam peel 1.5M HCl 18.40+0.18%
Potato peel 2.0M HCI 18.23+0.04%
Watermelon | Acid hydrolysis | 1.5M HCI Sacharomyces 8.35£0.14% | Ezejiofor et al.
peel cerevisiae  (Bakers’ (2018)
Pineapple 2.0M HCl yeast) 11.44+0.29%
peel
BSG Complete acid | 12 M H.SOsat 37°C | A oryzae and S, | 37g/L Wilkinson et al.
hydrolysis for 1 h, then diluted | cerevisiae = NCYC479 (2017)
to 1M for 2h | for10 days
incubation at 100 °C
and then subsequent
quantification of
liberated sugars by
ion chromatography
Cassava peel | Enzymatic Highest reducing | S. cerevisiae 3.76% Witantri et al.
hydrolysis sugar (11.0267g/1) (2017)
Cassava peel R. nigricans + S. | 14.46g/cm3 Chibuzor et al.
from TME Africana +5. (2016)
4779 cerevisiae
BSG Acid and | 100mL of acids-HCl | Two vyeast strains: | 0.0856 and | Mata et al.
Enzymatic and HNOs, 1% w/w | Pichia stipites NCYC | 0.0308g (2015)
hydrolysis concentration 1541 and | EtOH/g of
Kluyveromyces sugars for A
marxianus NCYC 2791 | stipites and K.
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min

Cassava peel | Enzymatic S.cerevisiae (7days) 8.5% Olayide et al.
hydrolysis (2015)
Cassava peel | Enzymatic 55.2g/cm?3
hydrolysis (23%)
Zymomonas  mobillis Adiotomre
Yam peel Acid hydrolysis 200 mL of 1M HCI ?;goc ég d cerevisiae 46.6g/cm?3 (2015)
, 5 days)
(19.3%)
BSG Enzymatic incubator-VWR S. cerevisiae ATCC|5.43 mL of | Heredia-Olea et
hydrolysis model 1575 set at | 20252 (48h, 10% solid | EtOH per 100g | al. (2015)
50°C and 150 rpm for | loading) of  extruded
72 h BSG (dry
weight basis)
BSG Alkaline-acid S. cerevisiae NRRL YB | 12.79g/L Liguori et al.
pretreatment 2293 (24 h, 30°C, 120 (2015)
and enzymatic rpm)
hydrolysis  with
commercial
enzymes
Cassava peel | Acid hydrolysis 45mins, 100°C, acid | S. cerevisiae (pH: 5, | 45.5% Egbosiuba et al.
conc: 0.402t%, | yeast concentration: (2014)
cassava peel | 10 wt%, 6 days)
concentration: 2 g/L,
optimum glucose
yield of 78mg/ml
Cassava peel | Acid hydrolysis 0.5M Sulphuric acid | S.cerevisiae (4days) 3.58%yv/v Abidin et al.
solution, 100°C for 60 (2014)

Key Physicochemical and Thermodynamic Properties Governing Bioethanol
Performance

The suitability of bioethanol as an alternative fuel is fundamentally governed by a distinct suite
of physicochemical and thermodynamic properties. These characteristics, which arise from its
molecular structure and hydroxyl functional group, directly influence combustion efficiency,
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engine performance, material compatibility, and fuel handling protocols. Adherence to
standardized specifications, such as those outlined in ASTM D4806, is critical for ensuring fuel
quality and interoperability with existing infrastructure. The core properties that define fuel-
grade bioethanol are summarized in Table 9.

Table 9: Standardized physicochemical properties of denatured fuel ethanol (ASTM

D4806).

Property

Specification /
Typical Value

Significance for Fuel Application

Molecular Formula /
Weight

C2Hs0H / 46.07
g'mol-1

Determines combustion stoichiometry and
vapor density.

Clear, free of

Indicator of purity and absence of

(mass %)*

13.0%, O: 34.7%

Appearance . .
particulates contaminants.
Distillation 55_68 °C Affects vaporization and cold-start
Temperature Range behavior; a narrow range indicates purity.
. o Significantly lower than gasoline

Stoichiometric Air- . i ] ]

_ ~9:1 (~14.7:1), requiring engine calibration
Fuel Ratio .

adjustments.

Elemental .

. C: 52.2%, H: High oxygen content promotes more
Composition

complete, cleaner combustion.

Critical to prevent phase separation in

Water Content (max) < 1.0% v/v _

gasoline-ethanol blends.
Lower Calorific Value ~26.7-27.0 Approximately 35% lower than gasoline,
(LCV) MJ-kg-1 impacting fuel economy.

Latent Heat of
Vaporization

~840-920 kI kg-1

High value provides a significant charge-
cooling effect, enhancing power density.
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Specification / o I
Property _ Significance for Fuel Application

Typical Value
Research Octane 106-110 Superior anti-knock quality enables higher
Number (RON) engine compression ratios.
Melting Point -114 °C Excellent low-temperature fluidity.
Surface Tension Influences atomization and spray

~22.8 mN'm-1 . o
(20°C) formation in fuel injection systems.

Note: Based on pure ethanol; denaturants will cause minor variations.
*Source.: Adapted from ASTM D4806 - Standard Specification for Denatured Fuel Ethanol for
Blending with Gasolines for Use as Automotive Spark-Ignition Engine Fuel. *

Implications for Engine Performance and Fuel System Design

The properties delineated in Table 9 underpin a combination of operational advantages and
technical challenges. The high octane rating and substantial latent heat of vaporization of
bioethanol synergistically enhance the thermodynamic efficiency of spark-ignition engines by
permitting higher compression ratios and improving volumetric efficiency through charge
cooling. Furthermore, its significant oxygen content (34.7% by mass) promotes more complete
combustion, leading to substantial reductions in carbon monoxide (CO) and unburned
hydrocarbon (HC) emissions.

Conversely, the low energy density necessitates a higher fuel flow rate to maintain equivalent
power output, impacting vehicle range. The hygroscopic nature and high solubility of water
can lead to phase separation in gasoline-ethanol blends, mandating strict control of water
ingress throughout the supply chain. Additionally, its low stoichiometric air-fuel ratio and
different combustion chemistry require specialized engine control unit (ECU) mapping. Certain
material incompatibilities, particularly with some elastomers and metals, also necessitate
careful selection of fuel system components to mitigate corrosion and degradation issues.

Variability Linked to Feedstock and Production Pathway

It is imperative to note that the precise physicochemical profile of bioethanol, including
parameters such as congener composition (higher alcohols, esters), electrical conductivity, and
precise distillation curve, can exhibit variability. This variability is intrinsically linked to the
biomass feedstock (e.g., sugarcane, corn, lignocellulosic residues) and the specific hydrolysis
and fermentation pathways employed. Feedstocks with high fermentable sugar or starch
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content, low protein, and minimal inorganic impurities generally yield ethanol with higher purity
and more consistent fuel properties. Consequently, the optimization of production processes
is essential not only for maximizing yield but also for ensuring the final product meets the
stringent specifications required for automotive fuel application.

Conclusion and Future Perspectives

This review has critically synthesized the scientific principles and technological pathways
underpinning the valorization of prominent agricultural residues—brewer's spent grain (BSG),
cassava peels, and yam peels—into bioethanol. The conversion of these heterogeneous
biomasses is a complex, multi-stage bioprocess, and a central finding confirms that significant
variability in bioethanol yield is highly dependent on the specific feedstock and stringent
optimization of processing conditions. BSG, among the examined residues, demonstrates
particularly favorable compositional characteristics for cost-effective biorefining. Crucially, the
final bioethanol product, with rigorous downstream processing, can unequivocally meet
stringent international standards such as ASTM D4806.

The scientific and engineering community is now tasked with advancing beyond foundational
proofs-of-concept. The future trajectory of this field is defined by integrated technological
innovations in three critical research frontiers, driving current trends: advanced bioprocess
modelling, strain engineering and co-fermentation, and novel pretreatment technologies. By
decisively harnessing these innovations, the conversion of low-value agro-industrial byproducts
into high-value bioethanol can be fully realized, making a substantial and sustainable
contribution to a circular bioeconomy and a decarbonized energy future [1-192].
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